The Henle Fiber Layer in Albinism: Comparison to Normal and Relationship to Outer Nuclear Layer Thickness and Foveal Cone Density

Directional optical coherence tomography (D-OCT) allows the visualization of the Henle fiber layer (HFL) in vivo. Here, we used D-OCT to characterize the HFL and outer nuclear layer (ONL) in albinism and examine the relationship between true foveal ONL and peak cone density. Horizontal D-OCT B-scans...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 59; no. 13; pp. 5336 - 5348
Main Authors Lee, Daniel J., Woertz, Erica N., Visotcky, Alexis, Wilk, Melissa A., Heitkotter, Heather, Linderman, Rachel E., Tarima, Sergey, Summers, C. Gail, Brooks, Brian P., Brilliant, Murray H., Antony, Bhavna J., Lujan, Brandon J., Carroll, Joseph
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.11.2018
Subjects
Online AccessGet full text
ISSN1552-5783
0146-0404
1552-5783
DOI10.1167/iovs.18-24145

Cover

More Information
Summary:Directional optical coherence tomography (D-OCT) allows the visualization of the Henle fiber layer (HFL) in vivo. Here, we used D-OCT to characterize the HFL and outer nuclear layer (ONL) in albinism and examine the relationship between true foveal ONL and peak cone density. Horizontal D-OCT B-scans were acquired, registered, and averaged for 12 subjects with oculocutaneous albinism and 26 control subjects. Averaged images were manually segmented to extract HFL and ONL thickness. Adaptive optics scanning light ophthalmoscopy was used to acquire images of the foveal cone mosaic in 10 subjects with albinism, from which peak cone density was assessed. Across the foveal region, the HFL topography was different between subjects with albinism and normal controls. In particular, foveal HFL thickness was thicker in albinism than in normal controls (P < 0.0001), whereas foveal ONL thickness was thinner in albinism than in normal controls (P < 0.0001). The total HFL and ONL thickness was not significantly different between albinism and controls (P = 0.3169). Foveal ONL thickness was positively correlated with peak cone density in subjects with albinism (r = 0.8061, P = 0.0072). Foveal HFL and ONL topography are significantly altered in albinism relative to normal controls. Our data suggest that increased foveal cone packing drives the formation of Henle fibers, more so than the lateral displacement of inner retinal neurons (which is reduced in albinism). The ability to quantify foveal ONL and HFL may help further stratify grading schemes used to assess foveal hypoplasia.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
DJL and ENW contributed equally to the work presented here and should therefore be regarded as equivalent authors.
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.18-24145