Robot-assisted Transcranial Magnetic Stimulation (Robo-TMS): A Review

Transcranial magnetic stimulation (TMS) is a non-invasive and safe brain stimulation procedure with growing applications in clinical treatments and neuroscience research. However, achieving precise stimulation over prolonged sessions poses significant challenges. By integrating advanced robotics wit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; p. 1
Main Authors Bai, Wenzhi, Weightman, Andrew, O'Connor, Rory J, Ding, Zhengtao, Zhang, Mingming, Xie, Sheng Quan, Li, Zhenhong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2025.3585651

Cover

More Information
Summary:Transcranial magnetic stimulation (TMS) is a non-invasive and safe brain stimulation procedure with growing applications in clinical treatments and neuroscience research. However, achieving precise stimulation over prolonged sessions poses significant challenges. By integrating advanced robotics with conventional TMS, robot-assisted TMS (Robo-TMS) has emerged as a promising solution to enhance efficacy and streamline procedures. Despite growing interest, a comprehensive review from an engineering perspective has been notably absent. This paper systematically examines four critical aspects of Robo-TMS: hardware and integration; calibration and registration; neuronavigation systems; and control systems. We review state-of-the-art technologies in each area, identify current limitations, and propose future research directions. Our findings suggest that broader clinical adoption of Robo-TMS is currently limited by unverified clinical applicability, high operational complexity, and substantial implementation costs. Emerging technologies-including marker-less tracking, non-rigid registration, learning-based electric field (E-field) modelling, individualised magnetic resonance imaging (MRI) generation, robot-assisted multi-locus TMS (Robo-mTMS), and automated calibration and registration-present promising pathways to address these challenges.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2025.3585651