Dual-Channel Neural Network for Atrial Fibrillation Detection From a Single Lead ECG Wave

With the dramatic progress of wearable devices, continuous collection of single lead ECG wave is able to be implemented in a comfortable fashion. Data mining on single lead ECG wave is therefore attracting increasing attention, where atrial fibrillation (AF) detection is a hot topic. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 27; no. 5; pp. 2296 - 2305
Main Authors Fang, Bo, Chen, Junxin, Liu, Yu, Wang, Wei, Wang, Ke, Singh, Amit Kumar, Lv, Zhihan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2021.3120890

Cover

More Information
Summary:With the dramatic progress of wearable devices, continuous collection of single lead ECG wave is able to be implemented in a comfortable fashion. Data mining on single lead ECG wave is therefore attracting increasing attention, where atrial fibrillation (AF) detection is a hot topic. In this paper, we propose a dual-channel neural network for AF detection from a single lead ECG wave. Two primary phases are included, the data preprocessing part followed by a dual-channel neural network. A two-stage denoising procedure is developed for data preprocessing, so as to tackle the high noise and disturbance which generally resides in the ECG wave collected by wearable devices. Then the time-frequency spectrum and Poincare plot of the denoised ECG signal are imported into the developed dual-channel neural network for feature extraction and AF detection. On the 2017 PhysioNet/CinC Challenge database, the F1 values were 0.83, 0.90, and 0.75 for AF rhythm and normal rhythm, and other rhythm, respectively. The results well validate the effectiveness of the proposed method for AF detection from a single lead ECG wave, and also indicate its performance advantages over some state-of-the-art counterparts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2021.3120890