Teacher's Corner: Evaluating Informative Hypotheses Using the Bayes Factor in Structural Equation Models

This Teacher's Corner paper introduces Bayesian evaluation of informative hypotheses for structural equation models, using the free open-source R packages bain, for Bayesian informative hypothesis testing, and lavaan, a widely used SEM package. The introduction provides a brief non-technical ex...

Full description

Saved in:
Bibliographic Details
Published inStructural equation modeling Vol. 28; no. 2; pp. 292 - 301
Main Authors Van Lissa, Caspar J., Gu, Xin, Mulder, Joris, Rosseel, Yves, Van Zundert, Camiel, Hoijtink, Herbert
Format Journal Article
LanguageEnglish
Published Hove Routledge 04.03.2021
Psychology Press
Subjects
Online AccessGet full text
ISSN1070-5511
1532-8007
1532-8007
DOI10.1080/10705511.2020.1745644

Cover

More Information
Summary:This Teacher's Corner paper introduces Bayesian evaluation of informative hypotheses for structural equation models, using the free open-source R packages bain, for Bayesian informative hypothesis testing, and lavaan, a widely used SEM package. The introduction provides a brief non-technical explanation of informative hypotheses, the statistical underpinnings of Bayesian hypothesis evaluation, and the bain algorithm. Three tutorial examples demonstrate informative hypothesis evaluation in the context of common types of structural equation models: 1) confirmatory factor analysis, 2) latent variable regression, and 3) multiple group analysis. We discuss hypothesis formulation, the interpretation of Bayes factors and posterior model probabilities, and sensitivity analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-5511
1532-8007
1532-8007
DOI:10.1080/10705511.2020.1745644