A Fusion Dimension Reduction Method for the Features of Surface Electromyographic Signals

Surface electromyographic signals (sEMG) usually have high-dimensional properties, and direct processing of these data consumes significant computational resources. Dimensionality reduction processing can reduce the dimension of the data and improve the real-time performance and response speed. This...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 3933 - 3941
Main Authors Ma, Luyao, Tao, Qing, Zhang, Xiaodong, Chen, Qingzheng
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2024.3485186

Cover

More Information
Summary:Surface electromyographic signals (sEMG) usually have high-dimensional properties, and direct processing of these data consumes significant computational resources. Dimensionality reduction processing can reduce the dimension of the data and improve the real-time performance and response speed. This is especially important for application scenarios such as prosthetic control and rehabilitation training where rapid feedback is required. This paper proposes a feature fusion dimension reduction method for sEMG signals. This method is constructed based on the unique correlation between the features of sEMG. To test the performance of the new dimension reduction method, the sEMG signals from five leg movements were collected from eight subjects and the classification of the feature matrix before and after dimension reduction was tested by six classifiers. The results show that the feature matrix after fusion dimension reduction has excellent classification performance in the subsequent classification tasks. It produces up to 98.3% accuracy. And the highest comprehensive evaluation index can reach 0.9958. This paper also compares the new method with three commonly used dimensionality reduction methods. The results show that the performance of the new method is not only optimal but also extremely stable. Because its classification performance will not be lower than other dimensionality reduction methods due to the change of classifiers. This confirms that the new method has a higher utility value in sEMG signals processing compared to other dimension reduction methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2024.3485186