The Effect of Stimulation Intensity, Sampling Frequency, and Sample Synchronization in TMS-EEG on the TMS Pulse Artifact Amplitude and Duration

Transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) possesses diagnostic and therapeutic benefits. However, TMS provokes a large pulse artifact that momentarily obscures the cortical response, presenting a significant challenge for EEG data interpretation. We examined h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2612 - 2620
Main Authors Jamil, Zunaira, Saisanen, Laura, Demjan, Michal, Reijonen, Jusa, Julkunen, Petro
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2024.3429176

Cover

More Information
Summary:Transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) possesses diagnostic and therapeutic benefits. However, TMS provokes a large pulse artifact that momentarily obscures the cortical response, presenting a significant challenge for EEG data interpretation. We examined how stimulation intensity (SI), EEG sampling frequency (Fs) and synchronization of stimulation with EEG sampling influence the amplitude and duration of the pulse artifact. In eight healthy subjects, single-pulse TMS was administered to the primary motor cortex, due to its well-documented responsiveness to TMS. We applied two different SIs (90% and 120% of resting motor threshold, representing the commonly used subthreshold and suprathreshold levels) and Fs (conventional 5 kHz and high frequency 20 kHz) both with TMS synchronized with the EEG sampling and the conventional non-synchronized setting. Aside from removal of the DC-offset and epoching, no preprocessing was performed to the data. Using a random forest regression model, we identified that Fs had the largest impact on both the amplitude and duration of the pulse artifact, with median variable importance values of 1.444 and 1.327, respectively, followed by SI (0.964 and 1.083) and sampling synchronization (0.223 and 0.248). This indicated that Fs and SI are crucial for minimizing prediction error and thus play a pivotal role in accurately characterizing the pulse artifact. The results of this study enable focusing some of the study design parameters to minimize TMS pulse artifact, which is essential for both enhancing the reliability of clinical TMS-EEG applications and improving the overall integrity and interpretability of TMS-EEG data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2024.3429176