Balancing with binomial coefficients

In this paper, we study a balancing problem of ordinary binomial coefficients. The diop-hantine equation $$ \left(\begin{array}{@{}c@{}} 0\\ k \end{array}\right) +\left(\begin{array}{@{}c@{}} 1\\ k \end{array}\right) +\cdots+\left(\begin{array}{@{}c@{}} x-1\\k \end{array}\right)=\left(\begin{array}{...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of number theory Vol. 10; no. 7; pp. 1729 - 1742
Main Authors Komatsu, Takao, Szalay, László
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.11.2014
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN1793-0421
1793-7310
DOI10.1142/S1793042114500523

Cover

More Information
Summary:In this paper, we study a balancing problem of ordinary binomial coefficients. The diop-hantine equation $$ \left(\begin{array}{@{}c@{}} 0\\ k \end{array}\right) +\left(\begin{array}{@{}c@{}} 1\\ k \end{array}\right) +\cdots+\left(\begin{array}{@{}c@{}} x-1\\k \end{array}\right)=\left(\begin{array}{@{}c@{}} x+1\\ \ell \end{array}\right)+\cdots+\left(\begin{array}{@{}c@{}} y-1\\ \ell \end{array}\right)$$ in positive integers x and y ≥ x + 2 will be investigated, where k and ℓ are given positive integers. In case of k < ℓ the basic tool is the Runge method. If k ≥ ℓ, then the main results state effective and non-effective finiteness theorems on the subject matter. Further, computational results are also reported including the complete solutions when 1 ≤ k, ℓ ≤ 3, and a computer search otherwise.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1793-0421
1793-7310
DOI:10.1142/S1793042114500523