Balancing with binomial coefficients
In this paper, we study a balancing problem of ordinary binomial coefficients. The diop-hantine equation $$ \left(\begin{array}{@{}c@{}} 0\\ k \end{array}\right) +\left(\begin{array}{@{}c@{}} 1\\ k \end{array}\right) +\cdots+\left(\begin{array}{@{}c@{}} x-1\\k \end{array}\right)=\left(\begin{array}{...
        Saved in:
      
    
          | Published in | International journal of number theory Vol. 10; no. 7; pp. 1729 - 1742 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          World Scientific Publishing Company
    
        01.11.2014
     World Scientific Publishing Co. Pte., Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1793-0421 1793-7310  | 
| DOI | 10.1142/S1793042114500523 | 
Cover
| Summary: | In this paper, we study a balancing problem of ordinary binomial coefficients. The diop-hantine equation
$$ \left(\begin{array}{@{}c@{}} 0\\ k \end{array}\right) +\left(\begin{array}{@{}c@{}} 1\\ k \end{array}\right) +\cdots+\left(\begin{array}{@{}c@{}} x-1\\k \end{array}\right)=\left(\begin{array}{@{}c@{}} x+1\\ \ell \end{array}\right)+\cdots+\left(\begin{array}{@{}c@{}} y-1\\ \ell \end{array}\right)$$
in positive integers x and y ≥ x + 2 will be investigated, where k and ℓ are given positive integers. In case of k < ℓ the basic tool is the Runge method. If k ≥ ℓ, then the main results state effective and non-effective finiteness theorems on the subject matter. Further, computational results are also reported including the complete solutions when 1 ≤ k, ℓ ≤ 3, and a computer search otherwise. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 1793-0421 1793-7310  | 
| DOI: | 10.1142/S1793042114500523 |