On a Class of Parametric (p, 2)-equations

We consider parametric equations driven by the sum of a p -Laplacian and a Laplace operator (the so-called ( p , 2)-equations). We study the existence and multiplicity of solutions when the parameter λ > 0 is near the principal eigenvalue λ ^ 1 ( p ) > 0 of ( - Δ p , W 0 1 , p ( Ω ) ) . We pro...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics & optimization Vol. 75; no. 2; pp. 193 - 228
Main Authors Papageorgiou, Nikolaos S., Rădulescu, Vicenţiu D., Repovš, Dušan D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2017
Springer Nature B.V
Springer Verlag (Germany)
Subjects
Online AccessGet full text
ISSN0095-4616
1432-0606
DOI10.1007/s00245-016-9330-z

Cover

More Information
Summary:We consider parametric equations driven by the sum of a p -Laplacian and a Laplace operator (the so-called ( p , 2)-equations). We study the existence and multiplicity of solutions when the parameter λ > 0 is near the principal eigenvalue λ ^ 1 ( p ) > 0 of ( - Δ p , W 0 1 , p ( Ω ) ) . We prove multiplicity results with precise sign information when the near resonance occurs from above and from below of λ ^ 1 ( p ) > 0 .
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-016-9330-z