Locating the position of objects in non-line-of-sight based on time delay estimation
Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden...
Saved in:
Published in | Chinese physics B Vol. 25; no. 8; pp. 163 - 169 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/8/084203 |
Cover
Summary: | Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications. |
---|---|
Bibliography: | Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications. non-line-of-sight, time delay estimation, cross-correlation, hidden object location 11-5639/O4 Xue-Feng Wang, Yuan-Qing Wang, Jin-Shan Su, Xing-Yu Yang(1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China ;2 School of Electronic Information Engineering, Yili Normal University, Yining 83500, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/8/084203 |