Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective

This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron di...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 160; no. 14
Main Authors Janoš, Jiří, Figueira Nunes, Joao Pedro, Hollas, Daniel, Slavíček, Petr, Curchod, Basile F. E.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.04.2024
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0203105

Cover

Abstract This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born–Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born–Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function—ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
AbstractList This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born–Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born–Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function—ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
Author Hollas, Daniel
Slavíček, Petr
Janoš, Jiří
Figueira Nunes, Joao Pedro
Curchod, Basile F. E.
Author_xml – sequence: 1
  givenname: Jiří
  surname: Janoš
  fullname: Janoš, Jiří
  organization: 3Diamond Light Source Ltd., Didcot, United Kingdom
– sequence: 2
  givenname: Joao Pedro
  surname: Figueira Nunes
  fullname: Figueira Nunes, Joao Pedro
  organization: Diamond Light Source Ltd
– sequence: 3
  givenname: Daniel
  surname: Hollas
  fullname: Hollas, Daniel
  organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol
– sequence: 4
  givenname: Petr
  surname: Slavíček
  fullname: Slavíček, Petr
  email: petr.slavicek@vscht.cz
  organization: Department of Physical Chemistry, University of Chemistry and Technology
– sequence: 5
  givenname: Basile F. E.
  surname: Curchod
  fullname: Curchod, Basile F. E.
  organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38591685$$D View this record in MEDLINE/PubMed
BookMark eNp90U9q3DAUBnBRUppJ2kUvUATdNAUnT5Yly8thmv6BhAaSlO6MLMszGmzLleSCdzlED9BNL9Kj9CSVmZlNKF0JxO_7HtI7QUe97TVCLwmcE-D0gp1DCpQAe4IWBESR5LyAI7QASElScODH6MT7LQCQPM2eoWMqWEG4YAv068bp2qhg-jUOG42HjQ22nnrZGeWxbbCaVGurMch5Jg7OrNc6RnA1YYlb6bXDw9h6jWXAKcDvn32HZV9jEzy-1l-S-8t32Jt1L1v_5-HHMjbIrVbBugn70TVSabyxwzDPn2Nfr2-T1fL25i7Fg3Z-iNR818_R0yYW6Bf78xTdv7-8W31Mrj5_-LRaXiWKChoSrkRWFbWkIq8aXQlR5VARaHRGawXxbCjnvKYyMpCKyEanIt6AYLLIJKOn6M2ud3D226h9KDvjlW5b2Ws7-pICZZAzYCLS14_o1o5ufuasMpHmOZ_Vq70aq07X5eBMJ91UHhYQwcUOKGe9d7oplQkyGNvHjzJtSaCcV1yycr_imDh7lDiU_su-3Vl_aP0P_gt3H7SE
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0215890
crossref_primary_10_1063_5_0219205
crossref_primary_10_1063_5_0203597
crossref_primary_10_1021_acs_accounts_4c00687
crossref_primary_10_1063_5_0203105
crossref_primary_10_1063_5_0246270
crossref_primary_10_1021_acs_jpca_4c06150
crossref_primary_10_1063_5_0203722
crossref_primary_10_1063_5_0203636
Cites_doi 10.1021/acs.jpca.5b00302
10.1126/science.abb2235
10.1021/acs.chemrev.7b00577
10.1021/ja00996a002
10.1103/physrevlett.131.143001
10.1103/physrevlett.76.1212
10.1021/j100558a001
10.1021/jp110632g
10.1002/wcms.1331
10.1021/jp980219o
10.1063/1.4742313
10.1016/s0040-4039(00)90545-8
10.1063/1.4945782
10.1021/jacs.3c13046
10.1021/ct900563s
10.1039/a605958i
10.1002/advs.202100707
10.1021/acs.jpca.3c02333
10.1007/s00214-014-1526-1
10.1021/acsearthspacechem.1c00355
10.1021/acs.chemrev.1c00074
10.1002/cphc.201100929
10.1103/physreva.26.2395
10.1103/physrevlett.103.030603
10.1063/1.469428
10.1142/2914
10.1063/5.0203105
10.1021/ja00994a600
10.1002/anie.201208197
10.1039/d1cp02185k
10.1039/d0cp05907b
10.1039/c9fd00046a
10.1063/1.4757762
10.1063/5.0004713
10.1021/acs.jctc.0c00512
10.1038/s41557-019-0252-7
10.1002/wcms.1417
10.1002/1439-7641(20010518)2:5<294::aid-cphc294>3.3.co;2-x
10.1021/j100370a055
10.1146/annurev-physchem-082720-010539
10.1016/s0009-2614(98)00252-8
10.1021/jp001460h
10.1021/acs.jctc.3c00024
10.1021/acs.jctc.7b00018
10.1002/wcms.82
10.1146/annurev-physchem-040215-112245
10.1021/acs.jctc.8b01051
10.1098/rsta.2020.0377
10.1103/physrevlett.88.166402
10.1021/acs.accounts.7b00220
10.1038/s41557-020-0507-3
10.1039/c8cp00199e
10.1016/0022-2852(92)90236-h
10.1002/cphc.201100200
10.1063/1.459170
10.1021/jp953105a
10.1039/c3cp54016b
10.1063/1.478811
10.1063/1.4919780
10.1126/science.aat0049
10.1021/acs.jctc.0c00686
10.1016/0009-2614(95)00914-p
10.1063/1.1696427
10.1021/acs.jctc.3c00908
10.1063/1.470177
10.5194/essd-5-365-2013
10.1007/s00214-012-1237-4
10.1002/anie.201916381
10.1016/j.chemphys.2011.03.021
10.1063/1.1727709
10.1039/c9sc05208a
10.1063/1.1669813
10.1063/1.5120864
10.1140/epjb/e2018-90144-3
10.1021/acs.jpca.2c04756
10.1002/anie.201607633
10.1039/a801824c
10.1021/acs.chemrev.7b00423
10.1039/c8fd00088c
10.1063/1.2715585
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0203105
DatabaseName AIP (American Institute of Physics) Open Access Journals
CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP (American Institute of Physics) Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 38591685
10_1063_5_0203105
jcp
Genre Journal Article
GrantInformation_xml – fundername: Grant of Specific University Research
  grantid: A2_FCHI_2023_048
– fundername: Horizon 2020 Framework Program
  grantid: 803718
  funderid: https://doi.org/10.13039/100010661
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/X026973/1; EP/V026690/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: European Cooperation in Science and Technology
  grantid: CA18212
  funderid: https://doi.org/10.13039/501100000921
– fundername: Czech Science Foundation
  grantid: 23-07066S
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-6c84b9da387bfeb88b70b10fe43dc00fef3666d3a84b0ac1afe28666085a94a53
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 09:05:52 EDT 2025
Mon Jun 30 03:48:01 EDT 2025
Mon Jul 21 06:02:25 EDT 2025
Wed Oct 01 06:05:00 EDT 2025
Thu Apr 24 23:12:02 EDT 2025
Fri Jun 21 00:17:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Published open access through an agreement with JISC Collections 128554
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-6c84b9da387bfeb88b70b10fe43dc00fef3666d3a84b0ac1afe28666085a94a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5358-5538
0000-0001-5903-8538
0000-0002-1705-473X
OpenAccessLink http://dx.doi.org/10.1063/5.0203105
PMID 38591685
PQID 3034827768
PQPubID 2050685
PageCount 17
ParticipantIDs proquest_miscellaneous_3035075058
crossref_citationtrail_10_1063_5_0203105
proquest_journals_3034827768
crossref_primary_10_1063_5_0203105
pubmed_primary_38591685
scitation_primary_10_1063_5_0203105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240414
2024-04-14
2024-Apr-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 20240414
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Campbell, Schlag, Ristow (c42) 1967; 89
Doltsinis, Marx (c17) 2002; 88
Turro, Southam (c41) 1967; 8
Koch, Christiansen, Jørgensen, Olsen (c16) 1995; 244
Scharpen, Laurie (c79) 1968; 49
Shiozaki (c55) 2018; 8
Favero, Granucci, Persico (c84) 2013; 15
Wolf, Sanchez, Yang, Parrish, Nunes, Centurion, Coffee, Cryan, Gühr, Hegazy (c51) 2019; 11
Petersilka, Gossmann, Gross (c19) 1996; 76
Udvarhazi, El-Sayed (c81) 1965; 42
Tang, Lee (c43) 1976; 80
Persico, Granucci (c2) 2014; 133
Lannelongue, Grealey, Inouye (c77) 2021; 8
Schirmer (c14) 1982; 26
Park, Shiozaki (c54) 2017; 13
Agostini, Tavernelli, Ciccotti (c32) 2018; 91
Figueira Nunes, Ibele, Pathak, Attar, Bhattacharyya, Boll, Borne, Centurion, Erk, Lin, Forbes, Goff, Hansen, Hoffmann, Holland, Ingle, Luo, Muvva, Reid, Rouzée, Rudenko, Saha, Shen, Venkatachalam, Wang, Ware, Weathersby, Wilkin, Wolf, Xiong, Yang, Ashfold, Rolles, Curchod (c76) 2024; 146
Crespo-Otero, Barbatti (c26) 2018; 118
Martínez, Levine (c9) 1997; 93
Kuhlman, Sauer, Sølling, Møller (c49) 2012; 137
Folkestad, Kjønstad, Myhre, Andersen, Balbi, Coriani, Giovannini, Goletto, Haugland, Hutcheson, Høyvik, Moitra, Paul, Scavino, Skeidsvoll, Tveten, Koch (c58) 2020; 152
Diau, Kötting, Zewail (c44) 2001; 2
Cui, Fang (c39) 2011; 115
Sršeň, Hollas, Slavíček (c66) 2018; 20
Shen, Nunes, Yang, Jobe, Li, Lin, Moore, Niebuhr, Weathersby, Wolf, Yoneda, Guehr, Centurion, Wang (c85) 2019; 6
Agostini, Curchod (c3) 2019; 9
Donoso, Martens (c12) 1998; 102
Ryabinkin, Joubert-Doriol, Izmaylov (c30) 2017; 50
Zewail (c22) 2000; 104
Subotnik, Jain, Landry, Petit, Ouyang, Bellonzi (c28) 2016; 67
Keller-Rudek, Moortgat, Sander, Sörensen (c82) 2013; 5
Paul, Myhre, Koch (c57) 2021; 17
Prlj, Marsili, Hutton, Hollas, Shchepanovska, Glowacki, Slavíček, Curchod (c65) 2022; 6
Kapral, Ciccotti (c11) 1999; 110
Tully (c7) 1998; 110
Yang, Zhu, Wolf, Li, Nunes, Coffee, Cryan, Gühr, Hegazy, Heinz (c50) 2018; 361
Ceriotti, Bussi, Parrinello (c63) 2009; 103
Hammes-Schiffer (c29) 2022; 380
Xia, Liu, Fang, Cui (c37) 2015; 119
Alonso, Spiehl, Guarnieri, López, Lesarri (c80) 1992; 156
Werner, Knowles, Knizia, Manby, Schütz (c60) 2012; 2
Suchan, Janoš, Slavíček (c68) 2020; 16
Bondanza, Demoulin, Lipparini, Barbatti, Mennucci (c34) 2022; 126
Coker, Xiao (c13) 1995; 102
Marsili, Prlj, Curchod (c59) 2021; 23
Yang, Zhu, F Nunes, Yu, Parrish, Wolf, Centurion, Gühr, Li, Liu, Moore, Niebuhr, Park, Shen, Weathersby, Weinacht, Martinez, Wang (c53) 2020; 368
Denschlag, Lee (c40) 1967; 89
Curchod, Martínez (c27) 2018; 118
González, Escudero, Serrano-Andrés (c20) 2012; 13
Granucci, Persico (c70) 2007; 126
Centurion, Wolf, Yang (c52) 2022; 73
Borgers, Strauss (c78) 1966; 45
Kuhlman, Pittelkow, Sølling, Møller (c48) 2013; 52
Liu, Fang (c45) 2016; 144
Kuhlman, Sølling, Møller (c47) 2012; 13
Crespo-Otero, Barbatti (c61) 2012; 131
Mai, González (c4) 2020; 59
Martínez-Mesa, Saalfrank (c69) 2015; 142
Pieroni, Becuzzi, Creatini, Granucci, Persico (c24) 2023; 19
Suchan, Hollas, Curchod, Slavíček (c23) 2018; 212
Tavernelli, Curchod, Rothlisberger (c35) 2011; 391
Martínez, Ben-Nun, Levine (c8) 1996; 100
Janoš, Slavíček (c36) 2023; 19
Kao, Venkatraman, Ashfold, Orr-Ewing (c38) 2020; 11
Ceriotti, Bussi, Parrinello (c64) 2010; 6
Prlj, Hollas, Curchod (c25) 2023; 127
Parrish, Martínez (c75) 2019; 15
Matsika (c21) 2021; 121
Tully (c1) 2012; 137
Ghosh, Giannini, Lively, Blumberger (c31) 2020; 221
Santoro, Green, Martinez-Fernandez, Cerezo, Improta (c33) 2021; 23
Champenois, List, Ware, Britton, Bucksbaum, Cheng, Centurion, Cryan, Forbes, Gabalski, Hegazy, Hoffmann, Howard, Ji, Lin, Nunes, Shen, Yang, Wang, Martinez, Wolf (c86) 2023; 131
Finley, Malmqvist, Roos, Serrano-Andrés (c15) 1998; 288
Trentelman, Moss, Kable, Houston (c46) 1990; 94
Tully (c6) 1990; 93
Mignolet, Curchod, Martínez (c71) 2016; 55
Bittner, Rossky (c10) 1995; 103
Pathak, Ibele, Boll, Callegari, Demidovich, Erk, Feifel, Forbes, Di Fraia, Giannessi (c72) 2020; 12
(2024040910171823500_c24) 2023; 19
(2024040910171823500_c17) 2002; 88
(2024040910171823500_c16) 1995; 244
2024040910171823500_c73
(2024040910171823500_c86) 2023; 131
(2024040910171823500_c60) 2012; 2
(2024040910171823500_c56) 2013
(2024040910171823500_c85) 2019; 6
(2024040910171823500_c80) 1992; 156
(2024040910171823500_c75) 2019; 15
(2024040910171823500_c41) 1967; 8
Chong (2024040910171823500_c18) 1995
(2024040910171823500_c7) 1998; 110
(2024040910171823500_c26) 2018; 118
(2024040910171823500_c33) 2021; 23
(2024040910171823500_c61) 2012; 131
(2024040910171823500_c50) 2018; 361
(2024040910171823500_c15) 1998; 288
(2024040910171823500_c47) 2012; 13
(2024040910171823500_c59) 2021; 23
(2024040910171823500_c78) 1966; 45
(2024040910171823500_c45) 2016; 144
(2024040910171823500_c36) 2023; 19
(2024040910171823500_c2) 2014; 133
(2024040910171823500_c10) 1995; 103
(2024040910171823500_c65) 2022; 6
(2024040910171823500_c11) 1999; 110
(2024040910171823500_c42) 1967; 89
(2024040910171823500_c81) 1965; 42
(2024040910171823500_c48) 2013; 52
(2024040910171823500_c58) 2020; 152
(2024040910171823500_c43) 1976; 80
(2024040910171823500_c74) 2011
(2024040910171823500_c30) 2017; 50
(2024040910171823500_c25) 2023; 127
(2024040910171823500_c31) 2020; 221
(2024040910171823500_c51) 2019; 11
(2024040910171823500_c72) 2020; 12
(2024040910171823500_c3) 2019; 9
(2024040910171823500_c67) 1986
(2024040910171823500_c37) 2015; 119
(2024040910171823500_c55) 2018; 8
(2024040910171823500_c69) 2015; 142
(2024040910171823500_c83) 1993
(2024040910171823500_c62) 2019
(2024040910171823500_c35) 2011; 391
(2024040910171823500_c38) 2020; 11
(2024040910171823500_c21) 2021; 121
(2024040910171823500_c27) 2018; 118
(2024040910171823500_c82) 2013; 5
(2024040910171823500_c23) 2018; 212
(2024040910171823500_c71) 2016; 55
(2024040910171823500_c46) 1990; 94
(2024040910171823500_c77) 2021; 8
(2024040910171823500_c19) 1996; 76
(2024040910171823500_c12) 1998; 102
(2024040910171823500_c8) 1996; 100
(2024040910171823500_c34) 2022; 126
(2024040910171823500_c53) 2020; 368
(2024040910171823500_c29) 2022; 380
(2024040910171823500_c1) 2012; 137
(2024040910171823500_c9) 1997; 93
(2024040910171823500_c49) 2012; 137
(2024040910171823500_c32) 2018; 91
(2024040910171823500_c4) 2020; 59
(2024040910171823500_c68) 2020; 16
(2024040910171823500_c79) 1968; 49
(2024040910171823500_c6) 1990; 93
(2024040910171823500_c5) 2020
(2024040910171823500_c76) 2024; 146
(2024040910171823500_c54) 2017; 13
(2024040910171823500_c66) 2018; 20
2024040910171823500_c87
(2024040910171823500_c22) 2000; 104
(2024040910171823500_c63) 2009; 103
(2024040910171823500_c14) 1982; 26
(2024040910171823500_c13) 1995; 102
(2024040910171823500_c39) 2011; 115
(2024040910171823500_c40) 1967; 89
(2024040910171823500_c70) 2007; 126
(2024040910171823500_c20) 2012; 13
(2024040910171823500_c57) 2021; 17
(2024040910171823500_c64) 2010; 6
(2024040910171823500_c44) 2001; 2
(2024040910171823500_c52) 2022; 73
(2024040910171823500_c84) 2013; 15
(2024040910171823500_c28) 2016; 67
References_xml – volume: 212
  start-page: 307
  year: 2018
  ident: c23
  publication-title: Faraday Discuss.
– volume: 42
  start-page: 3335
  year: 1965
  ident: c81
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 9407
  year: 2021
  ident: c21
  publication-title: Chem. Rev.
– volume: 110
  start-page: 8919
  year: 1999
  ident: c11
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 820
  year: 2012
  ident: c47
  publication-title: ChemPhysChem
– volume: 144
  start-page: 144317
  year: 2016
  ident: c45
  publication-title: J. Chem. Phys.
– volume: 368
  start-page: 885
  year: 2020
  ident: c53
  publication-title: Science
– volume: 6
  start-page: 207
  year: 2022
  ident: c65
  publication-title: ACS Earth Space Chem.
– volume: 88
  start-page: 166402
  year: 2002
  ident: c17
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 504
  year: 2019
  ident: c51
  publication-title: Nat. Chem.
– volume: 152
  start-page: 184103
  year: 2020
  ident: c58
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 8273
  year: 2023
  ident: c36
  publication-title: J. Chem. Theory Comput.
– volume: 103
  start-page: 8130
  year: 1995
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 2395
  year: 1982
  ident: c14
  publication-title: Phys. Rev. A
– volume: 115
  start-page: 1547
  year: 2011
  ident: c39
  publication-title: J. Phys. Chem. A
– volume: 244
  start-page: 75
  year: 1995
  ident: c16
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 545
  year: 1967
  ident: c41
  publication-title: Tetrahedron Lett.
– volume: 45
  start-page: 947
  year: 1966
  ident: c78
  publication-title: J. Chem. Phys.
– volume: 142
  start-page: 194107
  year: 2015
  ident: c69
  publication-title: J. Chem. Phys.
– volume: 55
  start-page: 14993
  year: 2016
  ident: c71
  publication-title: Angew. Chem., Int. Ed.
– volume: 89
  start-page: 4795
  year: 1967
  ident: c40
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 1237
  year: 2012
  ident: c61
  publication-title: Theor. Chem. Acc.
– volume: 67
  start-page: 387
  year: 2016
  ident: c28
  publication-title: Annu. Rev. Phys. Chem.
– volume: 15
  start-page: 1523
  year: 2019
  ident: c75
  publication-title: J. Chem. Theory Comput.
– volume: 20
  start-page: 6421
  year: 2018
  ident: c66
  publication-title: Phys. Chem. Chem. Phys.
– volume: 100
  start-page: 7884
  year: 1996
  ident: c8
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 117
  year: 2021
  ident: c57
  publication-title: J. Chem. Theory Comput.
– volume: 137
  start-page: 22A522
  year: 2012
  ident: c49
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 054305
  year: 2019
  ident: c85
  publication-title: Structural Dynamics
– volume: 102
  start-page: 4291
  year: 1998
  ident: c12
  publication-title: J. Phys. Chem. A
– volume: 80
  start-page: 1833
  year: 1976
  ident: c43
  publication-title: J. Phys. Chem.
– volume: 9
  start-page: e1417
  year: 2019
  ident: c3
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 13
  start-page: 28
  year: 2012
  ident: c20
  publication-title: ChemPhysChem
– volume: 11
  start-page: 1991
  year: 2020
  ident: c38
  publication-title: Chem. Sci.
– volume: 59
  start-page: 16832
  year: 2020
  ident: c4
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 3305
  year: 2018
  ident: c27
  publication-title: Chem. Rev.
– volume: 16
  start-page: 5809
  year: 2020
  ident: c68
  publication-title: J. Chem. Theory Comput.
– volume: 361
  start-page: 64
  year: 2018
  ident: c50
  publication-title: Science
– volume: 91
  start-page: 139
  year: 2018
  ident: c32
  publication-title: Eur. Phys. J. B
– volume: 52
  start-page: 2247
  year: 2013
  ident: c48
  publication-title: Angew. Chem., Int. Ed.
– volume: 102
  start-page: 496
  year: 1995
  ident: c13
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 365
  year: 2013
  ident: c82
  publication-title: Earth Syst. Sci. Data
– volume: 126
  start-page: 6780
  year: 2022
  ident: c34
  publication-title: J. Phys. Chem. A
– volume: 13
  start-page: 2561
  year: 2017
  ident: c54
  publication-title: J. Chem. Theory Comput.
– volume: 110
  start-page: 407
  year: 1998
  ident: c7
  publication-title: Faraday Discuss.
– volume: 137
  start-page: 22A301
  year: 2012
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 795
  year: 2020
  ident: c72
  publication-title: Nat. Chem.
– volume: 93
  start-page: 1061
  year: 1990
  ident: c6
  publication-title: J. Chem. Phys.
– volume: 76
  start-page: 1212
  year: 1996
  ident: c19
  publication-title: Phys. Rev. Lett.
– volume: 127
  start-page: 7400
  year: 2023
  ident: c25
  publication-title: J. Phys. Chem. A
– volume: 94
  start-page: 3031
  year: 1990
  ident: c46
  publication-title: J. Phys. Chem.
– volume: 133
  start-page: 1526
  year: 2014
  ident: c2
  publication-title: Theor. Chem. Acc.
– volume: 146
  start-page: 4134
  year: 2024
  ident: c76
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 3569
  year: 2015
  ident: c37
  publication-title: J. Phys. Chem. A
– volume: 2
  start-page: 294
  year: 2001
  ident: c44
  publication-title: ChemPhysChem
– volume: 131
  start-page: 143001
  year: 2023
  ident: c86
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 941
  year: 1997
  ident: c9
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 221
  start-page: 501
  year: 2020
  ident: c31
  publication-title: Faraday Discuss.
– volume: 15
  start-page: 20651
  year: 2013
  ident: c84
  publication-title: Phys. Chem. Chem. Phys.
– volume: 288
  start-page: 299
  year: 1998
  ident: c15
  publication-title: Chem. Phys. Lett.
– volume: 19
  start-page: 2430
  year: 2023
  ident: c24
  publication-title: J. Chem. Theory Comput.
– volume: 8
  start-page: 2100707
  year: 2021
  ident: c77
  publication-title: Adv. Sci.
– volume: 156
  start-page: 341
  year: 1992
  ident: c80
  publication-title: J. Mol. Spectrosc.
– volume: 49
  start-page: 221
  year: 1968
  ident: c79
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: e1331
  year: 2018
  ident: c55
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 104
  start-page: 5660
  year: 2000
  ident: c22
  publication-title: J. Phys. Chem. A
– volume: 23
  start-page: 8181
  year: 2021
  ident: c33
  publication-title: Phys. Chem. Chem. Phys.
– volume: 73
  start-page: 21
  year: 2022
  ident: c52
  publication-title: Annu. Rev. Phys. Chem.
– volume: 6
  start-page: 1170
  year: 2010
  ident: c64
  publication-title: J. Chem. Theory Comput.
– volume: 380
  start-page: 20200377
  year: 2022
  ident: c29
  publication-title: Philos. Trans. R. Soc., A
– volume: 50
  start-page: 1785
  year: 2017
  ident: c30
  publication-title: Acc. Chem. Res.
– volume: 103
  start-page: 030603
  year: 2009
  ident: c63
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 12945
  year: 2021
  ident: c59
  publication-title: Phys. Chem. Chem. Phys.
– volume: 391
  start-page: 101
  year: 2011
  ident: c35
  publication-title: Chem. Phys.
– volume: 126
  start-page: 134114
  year: 2007
  ident: c70
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 7026
  year: 2018
  ident: c26
  publication-title: Chem. Rev.
– volume: 89
  start-page: 5098
  year: 1967
  ident: c42
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 242
  year: 2012
  ident: c60
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 119
  start-page: 3569
  year: 2015
  ident: 2024040910171823500_c37
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b00302
– volume: 368
  start-page: 885
  year: 2020
  ident: 2024040910171823500_c53
  publication-title: Science
  doi: 10.1126/science.abb2235
– volume: 118
  start-page: 7026
  year: 2018
  ident: 2024040910171823500_c26
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00577
– volume: 89
  start-page: 5098
  year: 1967
  ident: 2024040910171823500_c42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00996a002
– volume: 131
  start-page: 143001
  year: 2023
  ident: 2024040910171823500_c86
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.131.143001
– volume: 76
  start-page: 1212
  year: 1996
  ident: 2024040910171823500_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.76.1212
– volume: 80
  start-page: 1833
  year: 1976
  ident: 2024040910171823500_c43
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100558a001
– volume-title: Gaussian 09 Revision D.01
  year: 2013
  ident: 2024040910171823500_c56
– volume: 115
  start-page: 1547
  year: 2011
  ident: 2024040910171823500_c39
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp110632g
– volume: 8
  start-page: e1331
  year: 2018
  ident: 2024040910171823500_c55
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1331
– volume-title: Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules
  year: 1993
  ident: 2024040910171823500_c83
– volume: 102
  start-page: 4291
  year: 1998
  ident: 2024040910171823500_c12
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980219o
– volume: 137
  start-page: 22A522
  year: 2012
  ident: 2024040910171823500_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4742313
– volume: 8
  start-page: 545
  year: 1967
  ident: 2024040910171823500_c41
  publication-title: Tetrahedron Lett.
  doi: 10.1016/s0040-4039(00)90545-8
– volume: 144
  start-page: 144317
  year: 2016
  ident: 2024040910171823500_c45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4945782
– volume: 146
  start-page: 4134
  year: 2024
  ident: 2024040910171823500_c76
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13046
– volume: 6
  start-page: 1170
  year: 2010
  ident: 2024040910171823500_c64
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900563s
– volume: 93
  start-page: 941
  year: 1997
  ident: 2024040910171823500_c9
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a605958i
– volume: 8
  start-page: 2100707
  year: 2021
  ident: 2024040910171823500_c77
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100707
– volume: 127
  start-page: 7400
  year: 2023
  ident: 2024040910171823500_c25
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.3c02333
– volume: 133
  start-page: 1526
  year: 2014
  ident: 2024040910171823500_c2
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-014-1526-1
– volume: 6
  start-page: 207
  year: 2022
  ident: 2024040910171823500_c65
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.1c00355
– volume: 121
  start-page: 9407
  year: 2021
  ident: 2024040910171823500_c21
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00074
– volume: 13
  start-page: 820
  year: 2012
  ident: 2024040910171823500_c47
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100929
– volume: 26
  start-page: 2395
  year: 1982
  ident: 2024040910171823500_c14
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.26.2395
– volume: 103
  start-page: 030603
  year: 2009
  ident: 2024040910171823500_c63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.103.030603
– volume-title: Quantum Chemistry and Dynamics of Excited States: Methods and Applications
  year: 2020
  ident: 2024040910171823500_c5
– volume: 102
  start-page: 496
  year: 1995
  ident: 2024040910171823500_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469428
– start-page: 155
  volume-title: Recent Advances in Density Functional Methods
  year: 1995
  ident: 2024040910171823500_c18
  doi: 10.1142/2914
– ident: 2024040910171823500_c87
  doi: 10.1063/5.0203105
– volume: 89
  start-page: 4795
  year: 1967
  ident: 2024040910171823500_c40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00994a600
– volume: 52
  start-page: 2247
  year: 2013
  ident: 2024040910171823500_c48
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208197
– volume: 23
  start-page: 12945
  year: 2021
  ident: 2024040910171823500_c59
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d1cp02185k
– volume: 23
  start-page: 8181
  year: 2021
  ident: 2024040910171823500_c33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d0cp05907b
– volume: 221
  start-page: 501
  year: 2020
  ident: 2024040910171823500_c31
  publication-title: Faraday Discuss.
  doi: 10.1039/c9fd00046a
– volume: 137
  start-page: 22A301
  year: 2012
  ident: 2024040910171823500_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4757762
– volume: 152
  start-page: 184103
  year: 2020
  ident: 2024040910171823500_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0004713
– volume: 16
  start-page: 5809
  year: 2020
  ident: 2024040910171823500_c68
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00512
– volume: 11
  start-page: 504
  year: 2019
  ident: 2024040910171823500_c51
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0252-7
– volume: 9
  start-page: e1417
  year: 2019
  ident: 2024040910171823500_c3
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1417
– volume: 2
  start-page: 294
  year: 2001
  ident: 2024040910171823500_c44
  publication-title: ChemPhysChem
  doi: 10.1002/1439-7641(20010518)2:5<294::aid-cphc294>3.3.co;2-x
– volume: 94
  start-page: 3031
  year: 1990
  ident: 2024040910171823500_c46
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100370a055
– volume: 73
  start-page: 21
  year: 2022
  ident: 2024040910171823500_c52
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-082720-010539
– volume: 288
  start-page: 299
  year: 1998
  ident: 2024040910171823500_c15
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(98)00252-8
– volume: 104
  start-page: 5660
  year: 2000
  ident: 2024040910171823500_c22
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp001460h
– volume: 19
  start-page: 2430
  year: 2023
  ident: 2024040910171823500_c24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00024
– volume: 13
  start-page: 2561
  year: 2017
  ident: 2024040910171823500_c54
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00018
– volume: 2
  start-page: 242
  year: 2012
  ident: 2024040910171823500_c60
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.82
– volume: 67
  start-page: 387
  year: 2016
  ident: 2024040910171823500_c28
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040215-112245
– volume: 15
  start-page: 1523
  year: 2019
  ident: 2024040910171823500_c75
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01051
– volume: 380
  start-page: 20200377
  year: 2022
  ident: 2024040910171823500_c29
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2020.0377
– volume: 88
  start-page: 166402
  year: 2002
  ident: 2024040910171823500_c17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.88.166402
– volume: 50
  start-page: 1785
  year: 2017
  ident: 2024040910171823500_c30
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00220
– volume: 12
  start-page: 795
  year: 2020
  ident: 2024040910171823500_c72
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0507-3
– volume: 20
  start-page: 6421
  year: 2018
  ident: 2024040910171823500_c66
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c8cp00199e
– volume: 156
  start-page: 341
  year: 1992
  ident: 2024040910171823500_c80
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(92)90236-h
– volume-title: PHOTOX/ABIN: Pre-release of version 1.1
  year: 2019
  ident: 2024040910171823500_c62
– volume: 13
  start-page: 28
  year: 2012
  ident: 2024040910171823500_c20
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100200
– volume: 93
  start-page: 1061
  year: 1990
  ident: 2024040910171823500_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459170
– ident: 2024040910171823500_c73
– volume: 100
  start-page: 7884
  year: 1996
  ident: 2024040910171823500_c8
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953105a
– volume: 15
  start-page: 20651
  year: 2013
  ident: 2024040910171823500_c84
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54016b
– volume: 110
  start-page: 8919
  year: 1999
  ident: 2024040910171823500_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478811
– volume: 142
  start-page: 194107
  year: 2015
  ident: 2024040910171823500_c69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4919780
– volume: 361
  start-page: 64
  year: 2018
  ident: 2024040910171823500_c50
  publication-title: Science
  doi: 10.1126/science.aat0049
– volume: 17
  start-page: 117
  year: 2021
  ident: 2024040910171823500_c57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00686
– volume: 244
  start-page: 75
  year: 1995
  ident: 2024040910171823500_c16
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00914-p
– volume: 42
  start-page: 3335
  year: 1965
  ident: 2024040910171823500_c81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696427
– volume: 19
  start-page: 8273
  year: 2023
  ident: 2024040910171823500_c36
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00908
– volume: 103
  start-page: 8130
  year: 1995
  ident: 2024040910171823500_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470177
– volume: 5
  start-page: 365
  year: 2013
  ident: 2024040910171823500_c82
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-5-365-2013
– volume: 131
  start-page: 1237
  year: 2012
  ident: 2024040910171823500_c61
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-012-1237-4
– volume: 59
  start-page: 16832
  year: 2020
  ident: 2024040910171823500_c4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916381
– volume: 391
  start-page: 101
  year: 2011
  ident: 2024040910171823500_c35
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2011.03.021
– volume: 45
  start-page: 947
  year: 1966
  ident: 2024040910171823500_c78
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1727709
– volume: 11
  start-page: 1991
  year: 2020
  ident: 2024040910171823500_c38
  publication-title: Chem. Sci.
  doi: 10.1039/c9sc05208a
– volume: 49
  start-page: 221
  year: 1968
  ident: 2024040910171823500_c79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1669813
– volume: 6
  start-page: 054305
  year: 2019
  ident: 2024040910171823500_c85
  publication-title: Structural Dynamics
  doi: 10.1063/1.5120864
– volume: 91
  start-page: 139
  year: 2018
  ident: 2024040910171823500_c32
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2018-90144-3
– volume: 126
  start-page: 6780
  year: 2022
  ident: 2024040910171823500_c34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c04756
– volume-title: Density Estimation for Statistics and Data Analysis
  year: 1986
  ident: 2024040910171823500_c67
– volume: 55
  start-page: 14993
  year: 2016
  ident: 2024040910171823500_c71
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607633
– volume: 110
  start-page: 407
  year: 1998
  ident: 2024040910171823500_c7
  publication-title: Faraday Discuss.
  doi: 10.1039/a801824c
– volume: 118
  start-page: 3305
  year: 2018
  ident: 2024040910171823500_c27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00423
– volume-title: Elements of Modern X-Ray Physics
  year: 2011
  ident: 2024040910171823500_c74
– volume: 212
  start-page: 307
  year: 2018
  ident: 2024040910171823500_c23
  publication-title: Faraday Discuss.
  doi: 10.1039/c8fd00088c
– volume: 126
  start-page: 134114
  year: 2007
  ident: 2024040910171823500_c70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2715585
SSID ssj0001724
Score 2.5105233
Snippet This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase,...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Basis functions
Cyclopropane
Decay
Distribution functions
Electron diffraction
Electron states
Ethylene
Funnels
Impact prediction
Initial conditions
Internal conversion
Molecular dynamics
Photochemistry
Ring opening
Time dependence
Trajectory analysis
Vapor phases
Title Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective
URI http://dx.doi.org/10.1063/5.0203105
https://www.ncbi.nlm.nih.gov/pubmed/38591685
https://www.proquest.com/docview/3034827768
https://www.proquest.com/docview/3035075058
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5VqVDpAdHyFyjVQDlwWWp77bVzjJJWVUVQUBqUm7V_bkGtHcX2ITceggfg0hfpo_AkzPqvRVCJkyV71n8z4_lmZ_0NIe80116oBadh4g4oRih0qYRxqkPMJRJ0P8fYCf3JJ34y908XwWKDHNxTwefsMPhgi2Wu5Snd9NB1ox7ZHJ6OP0-7Dy7G4IZs2aUWkLcEQncH_xl2_sKS22QLI05d_L4TX44fk0cNMIRhrckdsmHSXbI1avux7ZIH1WJNlT8h19OVLa_YBcuA-A2WF1mR6bq1fA5ZAmqtLjNZIu7LUgMFJuDntiUnyDUIQLhsVrAsMSaCKADt9-ZnegUi1fC1yGFivtD50Rjswg40zV_ffwzxDOJbNbu_hrxcJUIZuMgsscN5NWwxmdHRcDY982B5--_mUzI_PjobndCm3QJVmKYWlKvIlwMtWBTKxMgokqEjXScxPtPKwS3qkHPNBIo5QrkiMV6EexC0iYEvAvaM9OxjvSAgtFAoxHzPBL5kTIYRF5YYRhnNPJf1yftWG3H72m1LjMu4qolzFgdxo7g-eduJLmsCjn8J7bUqjRsfzGMMzpbjFPOpPnnTHUal2ZKISE1WVjKBBU0ByjyvTaG7CrPUfjzCkx90tnH_Lbz8L6lX5KGHqMiWo1x_j_SKVWleI6op5D5a9XjycbbfWPdviDTzeg
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZQK7RwqKBAWVpg-DlwcZvEiZM9rratltKtFnUX7S1ybKc_WpJokxz2xkPwAFx4ER6FJ2GcvxYBEqdIydhxMuPMNxn7G0LeKq4cXwlO_dgeUPRQOKVixqnyMZaIcfpZ2vzQn5zx8dw9WXiLZm2O2QuDg8j3xVVWJfGvZXbQvEC6RMxZZjeEA5wdePsmjWYbBtNN7NTH2GtzeHL4cdp9itE7NzTMNjVQvaUWut34d4f0B8q8T3roi-q0-C3Pc_yAbDWQEYb1EB-SOzrZJr1RW6ltm9ytlnHK_BH5Pl2ZxItZygyI7CC7TItU1UXnc0hjkGu5TKMSEWGaaCgwNL8wxTohWoMABNJ6BVmJ3hJEAWjZP74ln0EkCq6KHCb6E50fHYJZ8oFG-_PL1yH2IK6r__5ryMtVLKSGy9RQPlxUzRaTczoank9nDmQ3uzofk_nx0Ww0pk0hBioxgC0ol4EbDZRggR_FOgqCyLci24q1y5S08Ija5VwxgWKWkLaItRPgGYRzYuAKjz0hG-axnhIQSkgUYq6jPTdiLPIDLgxljNSKOTbrk3etNsL2tZtiGcuwypZzFnpho7g-ed2JZjU1x9-E9lqVhs3szEN024b9FCOtPnnVXUalmWSJSHRaVjKegVMeyuzUptDdhRnSPx5g52862_j3EJ79l9RL0hvPJqfh6fuzD7vknoPYySStbHePbBSrUj9H7FNELxoL_wVP8f7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+photodynamics+of+cyclobutanone+triggered+by+a+laser+pulse+at+200+nm+and+its+MeV-UED+signals%E2%80%94A+trajectory+surface+hopping+and+XMS-CASPT2+perspective&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Figueira+Nunes+Joao+Pedro&rft.au=Hollas%2C+Daniel&rft.au=Slav%C3%AD%C4%8Dek+Petr&rft.au=Curchod+Basile+F+E&rft.date=2024-04-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=160&rft.issue=14&rft_id=info:doi/10.1063%2F5.0203105&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon