Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective
This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron di...
Saved in:
Published in | The Journal of chemical physics Vol. 160; no. 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0203105 |
Cover
Abstract | This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born–Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born–Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function—ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals. |
---|---|
AbstractList | This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born–Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born–Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function—ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals. This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals. This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals. |
Author | Hollas, Daniel Slavíček, Petr Janoš, Jiří Figueira Nunes, Joao Pedro Curchod, Basile F. E. |
Author_xml | – sequence: 1 givenname: Jiří surname: Janoš fullname: Janoš, Jiří organization: 3Diamond Light Source Ltd., Didcot, United Kingdom – sequence: 2 givenname: Joao Pedro surname: Figueira Nunes fullname: Figueira Nunes, Joao Pedro organization: Diamond Light Source Ltd – sequence: 3 givenname: Daniel surname: Hollas fullname: Hollas, Daniel organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol – sequence: 4 givenname: Petr surname: Slavíček fullname: Slavíček, Petr email: petr.slavicek@vscht.cz organization: Department of Physical Chemistry, University of Chemistry and Technology – sequence: 5 givenname: Basile F. E. surname: Curchod fullname: Curchod, Basile F. E. organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38591685$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U9q3DAUBnBRUppJ2kUvUATdNAUnT5Yly8thmv6BhAaSlO6MLMszGmzLleSCdzlED9BNL9Kj9CSVmZlNKF0JxO_7HtI7QUe97TVCLwmcE-D0gp1DCpQAe4IWBESR5LyAI7QASElScODH6MT7LQCQPM2eoWMqWEG4YAv068bp2qhg-jUOG42HjQ22nnrZGeWxbbCaVGurMch5Jg7OrNc6RnA1YYlb6bXDw9h6jWXAKcDvn32HZV9jEzy-1l-S-8t32Jt1L1v_5-HHMjbIrVbBugn70TVSabyxwzDPn2Nfr2-T1fL25i7Fg3Z-iNR818_R0yYW6Bf78xTdv7-8W31Mrj5_-LRaXiWKChoSrkRWFbWkIq8aXQlR5VARaHRGawXxbCjnvKYyMpCKyEanIt6AYLLIJKOn6M2ud3D226h9KDvjlW5b2Ws7-pICZZAzYCLS14_o1o5ufuasMpHmOZ_Vq70aq07X5eBMJ91UHhYQwcUOKGe9d7oplQkyGNvHjzJtSaCcV1yycr_imDh7lDiU_su-3Vl_aP0P_gt3H7SE |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_5_0215890 crossref_primary_10_1063_5_0219205 crossref_primary_10_1063_5_0203597 crossref_primary_10_1021_acs_accounts_4c00687 crossref_primary_10_1063_5_0203105 crossref_primary_10_1063_5_0246270 crossref_primary_10_1021_acs_jpca_4c06150 crossref_primary_10_1063_5_0203722 crossref_primary_10_1063_5_0203636 |
Cites_doi | 10.1021/acs.jpca.5b00302 10.1126/science.abb2235 10.1021/acs.chemrev.7b00577 10.1021/ja00996a002 10.1103/physrevlett.131.143001 10.1103/physrevlett.76.1212 10.1021/j100558a001 10.1021/jp110632g 10.1002/wcms.1331 10.1021/jp980219o 10.1063/1.4742313 10.1016/s0040-4039(00)90545-8 10.1063/1.4945782 10.1021/jacs.3c13046 10.1021/ct900563s 10.1039/a605958i 10.1002/advs.202100707 10.1021/acs.jpca.3c02333 10.1007/s00214-014-1526-1 10.1021/acsearthspacechem.1c00355 10.1021/acs.chemrev.1c00074 10.1002/cphc.201100929 10.1103/physreva.26.2395 10.1103/physrevlett.103.030603 10.1063/1.469428 10.1142/2914 10.1063/5.0203105 10.1021/ja00994a600 10.1002/anie.201208197 10.1039/d1cp02185k 10.1039/d0cp05907b 10.1039/c9fd00046a 10.1063/1.4757762 10.1063/5.0004713 10.1021/acs.jctc.0c00512 10.1038/s41557-019-0252-7 10.1002/wcms.1417 10.1002/1439-7641(20010518)2:5<294::aid-cphc294>3.3.co;2-x 10.1021/j100370a055 10.1146/annurev-physchem-082720-010539 10.1016/s0009-2614(98)00252-8 10.1021/jp001460h 10.1021/acs.jctc.3c00024 10.1021/acs.jctc.7b00018 10.1002/wcms.82 10.1146/annurev-physchem-040215-112245 10.1021/acs.jctc.8b01051 10.1098/rsta.2020.0377 10.1103/physrevlett.88.166402 10.1021/acs.accounts.7b00220 10.1038/s41557-020-0507-3 10.1039/c8cp00199e 10.1016/0022-2852(92)90236-h 10.1002/cphc.201100200 10.1063/1.459170 10.1021/jp953105a 10.1039/c3cp54016b 10.1063/1.478811 10.1063/1.4919780 10.1126/science.aat0049 10.1021/acs.jctc.0c00686 10.1016/0009-2614(95)00914-p 10.1063/1.1696427 10.1021/acs.jctc.3c00908 10.1063/1.470177 10.5194/essd-5-365-2013 10.1007/s00214-012-1237-4 10.1002/anie.201916381 10.1016/j.chemphys.2011.03.021 10.1063/1.1727709 10.1039/c9sc05208a 10.1063/1.1669813 10.1063/1.5120864 10.1140/epjb/e2018-90144-3 10.1021/acs.jpca.2c04756 10.1002/anie.201607633 10.1039/a801824c 10.1021/acs.chemrev.7b00423 10.1039/c8fd00088c 10.1063/1.2715585 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0203105 |
DatabaseName | AIP (American Institute of Physics) Open Access Journals CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AJDQP name: AIP (American Institute of Physics) Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 38591685 10_1063_5_0203105 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Grant of Specific University Research grantid: A2_FCHI_2023_048 – fundername: Horizon 2020 Framework Program grantid: 803718 funderid: https://doi.org/10.13039/100010661 – fundername: Engineering and Physical Sciences Research Council grantid: EP/X026973/1; EP/V026690/1 funderid: https://doi.org/10.13039/501100000266 – fundername: European Cooperation in Science and Technology grantid: CA18212 funderid: https://doi.org/10.13039/501100000921 – fundername: Czech Science Foundation grantid: 23-07066S |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-6c84b9da387bfeb88b70b10fe43dc00fef3666d3a84b0ac1afe28666085a94a53 |
IEDL.DBID | AJDQP |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 09:05:52 EDT 2025 Mon Jun 30 03:48:01 EDT 2025 Mon Jul 21 06:02:25 EDT 2025 Wed Oct 01 06:05:00 EDT 2025 Thu Apr 24 23:12:02 EDT 2025 Fri Jun 21 00:17:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Published open access through an agreement with JISC Collections 128554 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-6c84b9da387bfeb88b70b10fe43dc00fef3666d3a84b0ac1afe28666085a94a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5358-5538 0000-0001-5903-8538 0000-0002-1705-473X |
OpenAccessLink | http://dx.doi.org/10.1063/5.0203105 |
PMID | 38591685 |
PQID | 3034827768 |
PQPubID | 2050685 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3035075058 crossref_citationtrail_10_1063_5_0203105 proquest_journals_3034827768 crossref_primary_10_1063_5_0203105 pubmed_primary_38591685 scitation_primary_10_1063_5_0203105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240414 2024-04-14 2024-Apr-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 20240414 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Campbell, Schlag, Ristow (c42) 1967; 89 Doltsinis, Marx (c17) 2002; 88 Turro, Southam (c41) 1967; 8 Koch, Christiansen, Jørgensen, Olsen (c16) 1995; 244 Scharpen, Laurie (c79) 1968; 49 Shiozaki (c55) 2018; 8 Favero, Granucci, Persico (c84) 2013; 15 Wolf, Sanchez, Yang, Parrish, Nunes, Centurion, Coffee, Cryan, Gühr, Hegazy (c51) 2019; 11 Petersilka, Gossmann, Gross (c19) 1996; 76 Udvarhazi, El-Sayed (c81) 1965; 42 Tang, Lee (c43) 1976; 80 Persico, Granucci (c2) 2014; 133 Lannelongue, Grealey, Inouye (c77) 2021; 8 Schirmer (c14) 1982; 26 Park, Shiozaki (c54) 2017; 13 Agostini, Tavernelli, Ciccotti (c32) 2018; 91 Figueira Nunes, Ibele, Pathak, Attar, Bhattacharyya, Boll, Borne, Centurion, Erk, Lin, Forbes, Goff, Hansen, Hoffmann, Holland, Ingle, Luo, Muvva, Reid, Rouzée, Rudenko, Saha, Shen, Venkatachalam, Wang, Ware, Weathersby, Wilkin, Wolf, Xiong, Yang, Ashfold, Rolles, Curchod (c76) 2024; 146 Crespo-Otero, Barbatti (c26) 2018; 118 Martínez, Levine (c9) 1997; 93 Kuhlman, Sauer, Sølling, Møller (c49) 2012; 137 Folkestad, Kjønstad, Myhre, Andersen, Balbi, Coriani, Giovannini, Goletto, Haugland, Hutcheson, Høyvik, Moitra, Paul, Scavino, Skeidsvoll, Tveten, Koch (c58) 2020; 152 Diau, Kötting, Zewail (c44) 2001; 2 Cui, Fang (c39) 2011; 115 Sršeň, Hollas, Slavíček (c66) 2018; 20 Shen, Nunes, Yang, Jobe, Li, Lin, Moore, Niebuhr, Weathersby, Wolf, Yoneda, Guehr, Centurion, Wang (c85) 2019; 6 Agostini, Curchod (c3) 2019; 9 Donoso, Martens (c12) 1998; 102 Ryabinkin, Joubert-Doriol, Izmaylov (c30) 2017; 50 Zewail (c22) 2000; 104 Subotnik, Jain, Landry, Petit, Ouyang, Bellonzi (c28) 2016; 67 Keller-Rudek, Moortgat, Sander, Sörensen (c82) 2013; 5 Paul, Myhre, Koch (c57) 2021; 17 Prlj, Marsili, Hutton, Hollas, Shchepanovska, Glowacki, Slavíček, Curchod (c65) 2022; 6 Kapral, Ciccotti (c11) 1999; 110 Tully (c7) 1998; 110 Yang, Zhu, Wolf, Li, Nunes, Coffee, Cryan, Gühr, Hegazy, Heinz (c50) 2018; 361 Ceriotti, Bussi, Parrinello (c63) 2009; 103 Hammes-Schiffer (c29) 2022; 380 Xia, Liu, Fang, Cui (c37) 2015; 119 Alonso, Spiehl, Guarnieri, López, Lesarri (c80) 1992; 156 Werner, Knowles, Knizia, Manby, Schütz (c60) 2012; 2 Suchan, Janoš, Slavíček (c68) 2020; 16 Bondanza, Demoulin, Lipparini, Barbatti, Mennucci (c34) 2022; 126 Coker, Xiao (c13) 1995; 102 Marsili, Prlj, Curchod (c59) 2021; 23 Yang, Zhu, F Nunes, Yu, Parrish, Wolf, Centurion, Gühr, Li, Liu, Moore, Niebuhr, Park, Shen, Weathersby, Weinacht, Martinez, Wang (c53) 2020; 368 Denschlag, Lee (c40) 1967; 89 Curchod, Martínez (c27) 2018; 118 González, Escudero, Serrano-Andrés (c20) 2012; 13 Granucci, Persico (c70) 2007; 126 Centurion, Wolf, Yang (c52) 2022; 73 Borgers, Strauss (c78) 1966; 45 Kuhlman, Pittelkow, Sølling, Møller (c48) 2013; 52 Liu, Fang (c45) 2016; 144 Kuhlman, Sølling, Møller (c47) 2012; 13 Crespo-Otero, Barbatti (c61) 2012; 131 Mai, González (c4) 2020; 59 Martínez-Mesa, Saalfrank (c69) 2015; 142 Pieroni, Becuzzi, Creatini, Granucci, Persico (c24) 2023; 19 Suchan, Hollas, Curchod, Slavíček (c23) 2018; 212 Tavernelli, Curchod, Rothlisberger (c35) 2011; 391 Martínez, Ben-Nun, Levine (c8) 1996; 100 Janoš, Slavíček (c36) 2023; 19 Kao, Venkatraman, Ashfold, Orr-Ewing (c38) 2020; 11 Ceriotti, Bussi, Parrinello (c64) 2010; 6 Prlj, Hollas, Curchod (c25) 2023; 127 Parrish, Martínez (c75) 2019; 15 Matsika (c21) 2021; 121 Tully (c1) 2012; 137 Ghosh, Giannini, Lively, Blumberger (c31) 2020; 221 Santoro, Green, Martinez-Fernandez, Cerezo, Improta (c33) 2021; 23 Champenois, List, Ware, Britton, Bucksbaum, Cheng, Centurion, Cryan, Forbes, Gabalski, Hegazy, Hoffmann, Howard, Ji, Lin, Nunes, Shen, Yang, Wang, Martinez, Wolf (c86) 2023; 131 Finley, Malmqvist, Roos, Serrano-Andrés (c15) 1998; 288 Trentelman, Moss, Kable, Houston (c46) 1990; 94 Tully (c6) 1990; 93 Mignolet, Curchod, Martínez (c71) 2016; 55 Bittner, Rossky (c10) 1995; 103 Pathak, Ibele, Boll, Callegari, Demidovich, Erk, Feifel, Forbes, Di Fraia, Giannessi (c72) 2020; 12 (2024040910171823500_c24) 2023; 19 (2024040910171823500_c17) 2002; 88 (2024040910171823500_c16) 1995; 244 2024040910171823500_c73 (2024040910171823500_c86) 2023; 131 (2024040910171823500_c60) 2012; 2 (2024040910171823500_c56) 2013 (2024040910171823500_c85) 2019; 6 (2024040910171823500_c80) 1992; 156 (2024040910171823500_c75) 2019; 15 (2024040910171823500_c41) 1967; 8 Chong (2024040910171823500_c18) 1995 (2024040910171823500_c7) 1998; 110 (2024040910171823500_c26) 2018; 118 (2024040910171823500_c33) 2021; 23 (2024040910171823500_c61) 2012; 131 (2024040910171823500_c50) 2018; 361 (2024040910171823500_c15) 1998; 288 (2024040910171823500_c47) 2012; 13 (2024040910171823500_c59) 2021; 23 (2024040910171823500_c78) 1966; 45 (2024040910171823500_c45) 2016; 144 (2024040910171823500_c36) 2023; 19 (2024040910171823500_c2) 2014; 133 (2024040910171823500_c10) 1995; 103 (2024040910171823500_c65) 2022; 6 (2024040910171823500_c11) 1999; 110 (2024040910171823500_c42) 1967; 89 (2024040910171823500_c81) 1965; 42 (2024040910171823500_c48) 2013; 52 (2024040910171823500_c58) 2020; 152 (2024040910171823500_c43) 1976; 80 (2024040910171823500_c74) 2011 (2024040910171823500_c30) 2017; 50 (2024040910171823500_c25) 2023; 127 (2024040910171823500_c31) 2020; 221 (2024040910171823500_c51) 2019; 11 (2024040910171823500_c72) 2020; 12 (2024040910171823500_c3) 2019; 9 (2024040910171823500_c67) 1986 (2024040910171823500_c37) 2015; 119 (2024040910171823500_c55) 2018; 8 (2024040910171823500_c69) 2015; 142 (2024040910171823500_c83) 1993 (2024040910171823500_c62) 2019 (2024040910171823500_c35) 2011; 391 (2024040910171823500_c38) 2020; 11 (2024040910171823500_c21) 2021; 121 (2024040910171823500_c27) 2018; 118 (2024040910171823500_c82) 2013; 5 (2024040910171823500_c23) 2018; 212 (2024040910171823500_c71) 2016; 55 (2024040910171823500_c46) 1990; 94 (2024040910171823500_c77) 2021; 8 (2024040910171823500_c19) 1996; 76 (2024040910171823500_c12) 1998; 102 (2024040910171823500_c8) 1996; 100 (2024040910171823500_c34) 2022; 126 (2024040910171823500_c53) 2020; 368 (2024040910171823500_c29) 2022; 380 (2024040910171823500_c1) 2012; 137 (2024040910171823500_c9) 1997; 93 (2024040910171823500_c49) 2012; 137 (2024040910171823500_c32) 2018; 91 (2024040910171823500_c4) 2020; 59 (2024040910171823500_c68) 2020; 16 (2024040910171823500_c79) 1968; 49 (2024040910171823500_c6) 1990; 93 (2024040910171823500_c5) 2020 (2024040910171823500_c76) 2024; 146 (2024040910171823500_c54) 2017; 13 (2024040910171823500_c66) 2018; 20 2024040910171823500_c87 (2024040910171823500_c22) 2000; 104 (2024040910171823500_c63) 2009; 103 (2024040910171823500_c14) 1982; 26 (2024040910171823500_c13) 1995; 102 (2024040910171823500_c39) 2011; 115 (2024040910171823500_c40) 1967; 89 (2024040910171823500_c70) 2007; 126 (2024040910171823500_c20) 2012; 13 (2024040910171823500_c57) 2021; 17 (2024040910171823500_c64) 2010; 6 (2024040910171823500_c44) 2001; 2 (2024040910171823500_c52) 2022; 73 (2024040910171823500_c84) 2013; 15 (2024040910171823500_c28) 2016; 67 |
References_xml | – volume: 212 start-page: 307 year: 2018 ident: c23 publication-title: Faraday Discuss. – volume: 42 start-page: 3335 year: 1965 ident: c81 publication-title: J. Chem. Phys. – volume: 121 start-page: 9407 year: 2021 ident: c21 publication-title: Chem. Rev. – volume: 110 start-page: 8919 year: 1999 ident: c11 publication-title: J. Chem. Phys. – volume: 13 start-page: 820 year: 2012 ident: c47 publication-title: ChemPhysChem – volume: 144 start-page: 144317 year: 2016 ident: c45 publication-title: J. Chem. Phys. – volume: 368 start-page: 885 year: 2020 ident: c53 publication-title: Science – volume: 6 start-page: 207 year: 2022 ident: c65 publication-title: ACS Earth Space Chem. – volume: 88 start-page: 166402 year: 2002 ident: c17 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 504 year: 2019 ident: c51 publication-title: Nat. Chem. – volume: 152 start-page: 184103 year: 2020 ident: c58 publication-title: J. Chem. Phys. – volume: 19 start-page: 8273 year: 2023 ident: c36 publication-title: J. Chem. Theory Comput. – volume: 103 start-page: 8130 year: 1995 ident: c10 publication-title: J. Chem. Phys. – volume: 26 start-page: 2395 year: 1982 ident: c14 publication-title: Phys. Rev. A – volume: 115 start-page: 1547 year: 2011 ident: c39 publication-title: J. Phys. Chem. A – volume: 244 start-page: 75 year: 1995 ident: c16 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 545 year: 1967 ident: c41 publication-title: Tetrahedron Lett. – volume: 45 start-page: 947 year: 1966 ident: c78 publication-title: J. Chem. Phys. – volume: 142 start-page: 194107 year: 2015 ident: c69 publication-title: J. Chem. Phys. – volume: 55 start-page: 14993 year: 2016 ident: c71 publication-title: Angew. Chem., Int. Ed. – volume: 89 start-page: 4795 year: 1967 ident: c40 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 1237 year: 2012 ident: c61 publication-title: Theor. Chem. Acc. – volume: 67 start-page: 387 year: 2016 ident: c28 publication-title: Annu. Rev. Phys. Chem. – volume: 15 start-page: 1523 year: 2019 ident: c75 publication-title: J. Chem. Theory Comput. – volume: 20 start-page: 6421 year: 2018 ident: c66 publication-title: Phys. Chem. Chem. Phys. – volume: 100 start-page: 7884 year: 1996 ident: c8 publication-title: J. Phys. Chem. – volume: 17 start-page: 117 year: 2021 ident: c57 publication-title: J. Chem. Theory Comput. – volume: 137 start-page: 22A522 year: 2012 ident: c49 publication-title: J. Chem. Phys. – volume: 6 start-page: 054305 year: 2019 ident: c85 publication-title: Structural Dynamics – volume: 102 start-page: 4291 year: 1998 ident: c12 publication-title: J. Phys. Chem. A – volume: 80 start-page: 1833 year: 1976 ident: c43 publication-title: J. Phys. Chem. – volume: 9 start-page: e1417 year: 2019 ident: c3 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 13 start-page: 28 year: 2012 ident: c20 publication-title: ChemPhysChem – volume: 11 start-page: 1991 year: 2020 ident: c38 publication-title: Chem. Sci. – volume: 59 start-page: 16832 year: 2020 ident: c4 publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 3305 year: 2018 ident: c27 publication-title: Chem. Rev. – volume: 16 start-page: 5809 year: 2020 ident: c68 publication-title: J. Chem. Theory Comput. – volume: 361 start-page: 64 year: 2018 ident: c50 publication-title: Science – volume: 91 start-page: 139 year: 2018 ident: c32 publication-title: Eur. Phys. J. B – volume: 52 start-page: 2247 year: 2013 ident: c48 publication-title: Angew. Chem., Int. Ed. – volume: 102 start-page: 496 year: 1995 ident: c13 publication-title: J. Chem. Phys. – volume: 5 start-page: 365 year: 2013 ident: c82 publication-title: Earth Syst. Sci. Data – volume: 126 start-page: 6780 year: 2022 ident: c34 publication-title: J. Phys. Chem. A – volume: 13 start-page: 2561 year: 2017 ident: c54 publication-title: J. Chem. Theory Comput. – volume: 110 start-page: 407 year: 1998 ident: c7 publication-title: Faraday Discuss. – volume: 137 start-page: 22A301 year: 2012 ident: c1 publication-title: J. Chem. Phys. – volume: 12 start-page: 795 year: 2020 ident: c72 publication-title: Nat. Chem. – volume: 93 start-page: 1061 year: 1990 ident: c6 publication-title: J. Chem. Phys. – volume: 76 start-page: 1212 year: 1996 ident: c19 publication-title: Phys. Rev. Lett. – volume: 127 start-page: 7400 year: 2023 ident: c25 publication-title: J. Phys. Chem. A – volume: 94 start-page: 3031 year: 1990 ident: c46 publication-title: J. Phys. Chem. – volume: 133 start-page: 1526 year: 2014 ident: c2 publication-title: Theor. Chem. Acc. – volume: 146 start-page: 4134 year: 2024 ident: c76 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 3569 year: 2015 ident: c37 publication-title: J. Phys. Chem. A – volume: 2 start-page: 294 year: 2001 ident: c44 publication-title: ChemPhysChem – volume: 131 start-page: 143001 year: 2023 ident: c86 publication-title: Phys. Rev. Lett. – volume: 93 start-page: 941 year: 1997 ident: c9 publication-title: J. Chem. Soc., Faraday Trans. – volume: 221 start-page: 501 year: 2020 ident: c31 publication-title: Faraday Discuss. – volume: 15 start-page: 20651 year: 2013 ident: c84 publication-title: Phys. Chem. Chem. Phys. – volume: 288 start-page: 299 year: 1998 ident: c15 publication-title: Chem. Phys. Lett. – volume: 19 start-page: 2430 year: 2023 ident: c24 publication-title: J. Chem. Theory Comput. – volume: 8 start-page: 2100707 year: 2021 ident: c77 publication-title: Adv. Sci. – volume: 156 start-page: 341 year: 1992 ident: c80 publication-title: J. Mol. Spectrosc. – volume: 49 start-page: 221 year: 1968 ident: c79 publication-title: J. Chem. Phys. – volume: 8 start-page: e1331 year: 2018 ident: c55 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 104 start-page: 5660 year: 2000 ident: c22 publication-title: J. Phys. Chem. A – volume: 23 start-page: 8181 year: 2021 ident: c33 publication-title: Phys. Chem. Chem. Phys. – volume: 73 start-page: 21 year: 2022 ident: c52 publication-title: Annu. Rev. Phys. Chem. – volume: 6 start-page: 1170 year: 2010 ident: c64 publication-title: J. Chem. Theory Comput. – volume: 380 start-page: 20200377 year: 2022 ident: c29 publication-title: Philos. Trans. R. Soc., A – volume: 50 start-page: 1785 year: 2017 ident: c30 publication-title: Acc. Chem. Res. – volume: 103 start-page: 030603 year: 2009 ident: c63 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 12945 year: 2021 ident: c59 publication-title: Phys. Chem. Chem. Phys. – volume: 391 start-page: 101 year: 2011 ident: c35 publication-title: Chem. Phys. – volume: 126 start-page: 134114 year: 2007 ident: c70 publication-title: J. Chem. Phys. – volume: 118 start-page: 7026 year: 2018 ident: c26 publication-title: Chem. Rev. – volume: 89 start-page: 5098 year: 1967 ident: c42 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 242 year: 2012 ident: c60 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 119 start-page: 3569 year: 2015 ident: 2024040910171823500_c37 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b00302 – volume: 368 start-page: 885 year: 2020 ident: 2024040910171823500_c53 publication-title: Science doi: 10.1126/science.abb2235 – volume: 118 start-page: 7026 year: 2018 ident: 2024040910171823500_c26 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00577 – volume: 89 start-page: 5098 year: 1967 ident: 2024040910171823500_c42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00996a002 – volume: 131 start-page: 143001 year: 2023 ident: 2024040910171823500_c86 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.131.143001 – volume: 76 start-page: 1212 year: 1996 ident: 2024040910171823500_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.76.1212 – volume: 80 start-page: 1833 year: 1976 ident: 2024040910171823500_c43 publication-title: J. Phys. Chem. doi: 10.1021/j100558a001 – volume-title: Gaussian 09 Revision D.01 year: 2013 ident: 2024040910171823500_c56 – volume: 115 start-page: 1547 year: 2011 ident: 2024040910171823500_c39 publication-title: J. Phys. Chem. A doi: 10.1021/jp110632g – volume: 8 start-page: e1331 year: 2018 ident: 2024040910171823500_c55 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1331 – volume-title: Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules year: 1993 ident: 2024040910171823500_c83 – volume: 102 start-page: 4291 year: 1998 ident: 2024040910171823500_c12 publication-title: J. Phys. Chem. A doi: 10.1021/jp980219o – volume: 137 start-page: 22A522 year: 2012 ident: 2024040910171823500_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.4742313 – volume: 8 start-page: 545 year: 1967 ident: 2024040910171823500_c41 publication-title: Tetrahedron Lett. doi: 10.1016/s0040-4039(00)90545-8 – volume: 144 start-page: 144317 year: 2016 ident: 2024040910171823500_c45 publication-title: J. Chem. Phys. doi: 10.1063/1.4945782 – volume: 146 start-page: 4134 year: 2024 ident: 2024040910171823500_c76 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13046 – volume: 6 start-page: 1170 year: 2010 ident: 2024040910171823500_c64 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900563s – volume: 93 start-page: 941 year: 1997 ident: 2024040910171823500_c9 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/a605958i – volume: 8 start-page: 2100707 year: 2021 ident: 2024040910171823500_c77 publication-title: Adv. Sci. doi: 10.1002/advs.202100707 – volume: 127 start-page: 7400 year: 2023 ident: 2024040910171823500_c25 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.3c02333 – volume: 133 start-page: 1526 year: 2014 ident: 2024040910171823500_c2 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-014-1526-1 – volume: 6 start-page: 207 year: 2022 ident: 2024040910171823500_c65 publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.1c00355 – volume: 121 start-page: 9407 year: 2021 ident: 2024040910171823500_c21 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00074 – volume: 13 start-page: 820 year: 2012 ident: 2024040910171823500_c47 publication-title: ChemPhysChem doi: 10.1002/cphc.201100929 – volume: 26 start-page: 2395 year: 1982 ident: 2024040910171823500_c14 publication-title: Phys. Rev. A doi: 10.1103/physreva.26.2395 – volume: 103 start-page: 030603 year: 2009 ident: 2024040910171823500_c63 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.103.030603 – volume-title: Quantum Chemistry and Dynamics of Excited States: Methods and Applications year: 2020 ident: 2024040910171823500_c5 – volume: 102 start-page: 496 year: 1995 ident: 2024040910171823500_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.469428 – start-page: 155 volume-title: Recent Advances in Density Functional Methods year: 1995 ident: 2024040910171823500_c18 doi: 10.1142/2914 – ident: 2024040910171823500_c87 doi: 10.1063/5.0203105 – volume: 89 start-page: 4795 year: 1967 ident: 2024040910171823500_c40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00994a600 – volume: 52 start-page: 2247 year: 2013 ident: 2024040910171823500_c48 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208197 – volume: 23 start-page: 12945 year: 2021 ident: 2024040910171823500_c59 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d1cp02185k – volume: 23 start-page: 8181 year: 2021 ident: 2024040910171823500_c33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d0cp05907b – volume: 221 start-page: 501 year: 2020 ident: 2024040910171823500_c31 publication-title: Faraday Discuss. doi: 10.1039/c9fd00046a – volume: 137 start-page: 22A301 year: 2012 ident: 2024040910171823500_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.4757762 – volume: 152 start-page: 184103 year: 2020 ident: 2024040910171823500_c58 publication-title: J. Chem. Phys. doi: 10.1063/5.0004713 – volume: 16 start-page: 5809 year: 2020 ident: 2024040910171823500_c68 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00512 – volume: 11 start-page: 504 year: 2019 ident: 2024040910171823500_c51 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0252-7 – volume: 9 start-page: e1417 year: 2019 ident: 2024040910171823500_c3 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1417 – volume: 2 start-page: 294 year: 2001 ident: 2024040910171823500_c44 publication-title: ChemPhysChem doi: 10.1002/1439-7641(20010518)2:5<294::aid-cphc294>3.3.co;2-x – volume: 94 start-page: 3031 year: 1990 ident: 2024040910171823500_c46 publication-title: J. Phys. Chem. doi: 10.1021/j100370a055 – volume: 73 start-page: 21 year: 2022 ident: 2024040910171823500_c52 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-082720-010539 – volume: 288 start-page: 299 year: 1998 ident: 2024040910171823500_c15 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(98)00252-8 – volume: 104 start-page: 5660 year: 2000 ident: 2024040910171823500_c22 publication-title: J. Phys. Chem. A doi: 10.1021/jp001460h – volume: 19 start-page: 2430 year: 2023 ident: 2024040910171823500_c24 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00024 – volume: 13 start-page: 2561 year: 2017 ident: 2024040910171823500_c54 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00018 – volume: 2 start-page: 242 year: 2012 ident: 2024040910171823500_c60 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.82 – volume: 67 start-page: 387 year: 2016 ident: 2024040910171823500_c28 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040215-112245 – volume: 15 start-page: 1523 year: 2019 ident: 2024040910171823500_c75 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01051 – volume: 380 start-page: 20200377 year: 2022 ident: 2024040910171823500_c29 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2020.0377 – volume: 88 start-page: 166402 year: 2002 ident: 2024040910171823500_c17 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.88.166402 – volume: 50 start-page: 1785 year: 2017 ident: 2024040910171823500_c30 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00220 – volume: 12 start-page: 795 year: 2020 ident: 2024040910171823500_c72 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0507-3 – volume: 20 start-page: 6421 year: 2018 ident: 2024040910171823500_c66 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c8cp00199e – volume: 156 start-page: 341 year: 1992 ident: 2024040910171823500_c80 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(92)90236-h – volume-title: PHOTOX/ABIN: Pre-release of version 1.1 year: 2019 ident: 2024040910171823500_c62 – volume: 13 start-page: 28 year: 2012 ident: 2024040910171823500_c20 publication-title: ChemPhysChem doi: 10.1002/cphc.201100200 – volume: 93 start-page: 1061 year: 1990 ident: 2024040910171823500_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.459170 – ident: 2024040910171823500_c73 – volume: 100 start-page: 7884 year: 1996 ident: 2024040910171823500_c8 publication-title: J. Phys. Chem. doi: 10.1021/jp953105a – volume: 15 start-page: 20651 year: 2013 ident: 2024040910171823500_c84 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54016b – volume: 110 start-page: 8919 year: 1999 ident: 2024040910171823500_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.478811 – volume: 142 start-page: 194107 year: 2015 ident: 2024040910171823500_c69 publication-title: J. Chem. Phys. doi: 10.1063/1.4919780 – volume: 361 start-page: 64 year: 2018 ident: 2024040910171823500_c50 publication-title: Science doi: 10.1126/science.aat0049 – volume: 17 start-page: 117 year: 2021 ident: 2024040910171823500_c57 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00686 – volume: 244 start-page: 75 year: 1995 ident: 2024040910171823500_c16 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00914-p – volume: 42 start-page: 3335 year: 1965 ident: 2024040910171823500_c81 publication-title: J. Chem. Phys. doi: 10.1063/1.1696427 – volume: 19 start-page: 8273 year: 2023 ident: 2024040910171823500_c36 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00908 – volume: 103 start-page: 8130 year: 1995 ident: 2024040910171823500_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.470177 – volume: 5 start-page: 365 year: 2013 ident: 2024040910171823500_c82 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-5-365-2013 – volume: 131 start-page: 1237 year: 2012 ident: 2024040910171823500_c61 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-012-1237-4 – volume: 59 start-page: 16832 year: 2020 ident: 2024040910171823500_c4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916381 – volume: 391 start-page: 101 year: 2011 ident: 2024040910171823500_c35 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2011.03.021 – volume: 45 start-page: 947 year: 1966 ident: 2024040910171823500_c78 publication-title: J. Chem. Phys. doi: 10.1063/1.1727709 – volume: 11 start-page: 1991 year: 2020 ident: 2024040910171823500_c38 publication-title: Chem. Sci. doi: 10.1039/c9sc05208a – volume: 49 start-page: 221 year: 1968 ident: 2024040910171823500_c79 publication-title: J. Chem. Phys. doi: 10.1063/1.1669813 – volume: 6 start-page: 054305 year: 2019 ident: 2024040910171823500_c85 publication-title: Structural Dynamics doi: 10.1063/1.5120864 – volume: 91 start-page: 139 year: 2018 ident: 2024040910171823500_c32 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2018-90144-3 – volume: 126 start-page: 6780 year: 2022 ident: 2024040910171823500_c34 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c04756 – volume-title: Density Estimation for Statistics and Data Analysis year: 1986 ident: 2024040910171823500_c67 – volume: 55 start-page: 14993 year: 2016 ident: 2024040910171823500_c71 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607633 – volume: 110 start-page: 407 year: 1998 ident: 2024040910171823500_c7 publication-title: Faraday Discuss. doi: 10.1039/a801824c – volume: 118 start-page: 3305 year: 2018 ident: 2024040910171823500_c27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00423 – volume-title: Elements of Modern X-Ray Physics year: 2011 ident: 2024040910171823500_c74 – volume: 212 start-page: 307 year: 2018 ident: 2024040910171823500_c23 publication-title: Faraday Discuss. doi: 10.1039/c8fd00088c – volume: 126 start-page: 134114 year: 2007 ident: 2024040910171823500_c70 publication-title: J. Chem. Phys. doi: 10.1063/1.2715585 |
SSID | ssj0001724 |
Score | 2.5105233 |
Snippet | This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase,... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Basis functions Cyclopropane Decay Distribution functions Electron diffraction Electron states Ethylene Funnels Impact prediction Initial conditions Internal conversion Molecular dynamics Photochemistry Ring opening Time dependence Trajectory analysis Vapor phases |
Title | Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective |
URI | http://dx.doi.org/10.1063/5.0203105 https://www.ncbi.nlm.nih.gov/pubmed/38591685 https://www.proquest.com/docview/3034827768 https://www.proquest.com/docview/3035075058 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5VqVDpAdHyFyjVQDlwWWp77bVzjJJWVUVQUBqUm7V_bkGtHcX2ITceggfg0hfpo_AkzPqvRVCJkyV71n8z4_lmZ_0NIe80116oBadh4g4oRih0qYRxqkPMJRJ0P8fYCf3JJ34y908XwWKDHNxTwefsMPhgi2Wu5Snd9NB1ox7ZHJ6OP0-7Dy7G4IZs2aUWkLcEQncH_xl2_sKS22QLI05d_L4TX44fk0cNMIRhrckdsmHSXbI1avux7ZIH1WJNlT8h19OVLa_YBcuA-A2WF1mR6bq1fA5ZAmqtLjNZIu7LUgMFJuDntiUnyDUIQLhsVrAsMSaCKADt9-ZnegUi1fC1yGFivtD50Rjswg40zV_ffwzxDOJbNbu_hrxcJUIZuMgsscN5NWwxmdHRcDY982B5--_mUzI_PjobndCm3QJVmKYWlKvIlwMtWBTKxMgokqEjXScxPtPKwS3qkHPNBIo5QrkiMV6EexC0iYEvAvaM9OxjvSAgtFAoxHzPBL5kTIYRF5YYRhnNPJf1yftWG3H72m1LjMu4qolzFgdxo7g-eduJLmsCjn8J7bUqjRsfzGMMzpbjFPOpPnnTHUal2ZKISE1WVjKBBU0ByjyvTaG7CrPUfjzCkx90tnH_Lbz8L6lX5KGHqMiWo1x_j_SKVWleI6op5D5a9XjycbbfWPdviDTzeg |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZQK7RwqKBAWVpg-DlwcZvEiZM9rratltKtFnUX7S1ybKc_WpJokxz2xkPwAFx4ER6FJ2GcvxYBEqdIydhxMuPMNxn7G0LeKq4cXwlO_dgeUPRQOKVixqnyMZaIcfpZ2vzQn5zx8dw9WXiLZm2O2QuDg8j3xVVWJfGvZXbQvEC6RMxZZjeEA5wdePsmjWYbBtNN7NTH2GtzeHL4cdp9itE7NzTMNjVQvaUWut34d4f0B8q8T3roi-q0-C3Pc_yAbDWQEYb1EB-SOzrZJr1RW6ltm9ytlnHK_BH5Pl2ZxItZygyI7CC7TItU1UXnc0hjkGu5TKMSEWGaaCgwNL8wxTohWoMABNJ6BVmJ3hJEAWjZP74ln0EkCq6KHCb6E50fHYJZ8oFG-_PL1yH2IK6r__5ryMtVLKSGy9RQPlxUzRaTczoank9nDmQ3uzofk_nx0Ww0pk0hBioxgC0ol4EbDZRggR_FOgqCyLci24q1y5S08Ija5VwxgWKWkLaItRPgGYRzYuAKjz0hG-axnhIQSkgUYq6jPTdiLPIDLgxljNSKOTbrk3etNsL2tZtiGcuwypZzFnpho7g-ed2JZjU1x9-E9lqVhs3szEN024b9FCOtPnnVXUalmWSJSHRaVjKegVMeyuzUptDdhRnSPx5g52862_j3EJ79l9RL0hvPJqfh6fuzD7vknoPYySStbHePbBSrUj9H7FNELxoL_wVP8f7s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+photodynamics+of+cyclobutanone+triggered+by+a+laser+pulse+at+200+nm+and+its+MeV-UED+signals%E2%80%94A+trajectory+surface+hopping+and+XMS-CASPT2+perspective&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Figueira+Nunes+Joao+Pedro&rft.au=Hollas%2C+Daniel&rft.au=Slav%C3%AD%C4%8Dek+Petr&rft.au=Curchod+Basile+F+E&rft.date=2024-04-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=160&rft.issue=14&rft_id=info:doi/10.1063%2F5.0203105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |