Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective

This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron di...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 160; no. 14
Main Authors Janoš, Jiří, Figueira Nunes, Joao Pedro, Hollas, Daniel, Slavíček, Petr, Curchod, Basile F. E.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.04.2024
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0203105

Cover

More Information
Summary:This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born–Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born–Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function—ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0203105