Spine Image Fusion Via Graph Cuts
This study investigates a novel CT/MR spine image fusion algorithm based on graph cuts. This algorithm allows physicians to visually assess corresponding soft tissue and bony detail on a single image eliminating mental alignment and correlation needed when both CT and MR images are required for diag...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 60; no. 7; pp. 1841 - 1850 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2013.2243448 |
Cover
| Summary: | This study investigates a novel CT/MR spine image fusion algorithm based on graph cuts. This algorithm allows physicians to visually assess corresponding soft tissue and bony detail on a single image eliminating mental alignment and correlation needed when both CT and MR images are required for diagnosis. We state the problem as a discrete multilabel optimization of an energy functional that balances the contributions of three competing terms: (1) a squared error, which encourages the solution to be similar to the MR input, with a preference to strong MR edges; (2) a squared error, which encourages the solution to be similar to the CT input, with a preference to strong CT edges; and (3) a prior, which favors smooth solutions by encouraging neighboring pixels to have similar fused-image values. We further introduce a transparency-labeling formulation, which significantly reduces the computational load. The proposed graph-cut fusion guarantees nearly global solutions, while avoiding the pix elation artifacts that affect standard wavelet-based methods. We report several quantitative evaluations/comparisons over 40 pairs of CT/MR images acquired from 20 patients, which demonstrate a very competitive performance in comparisons to the existing methods. We further discuss various case studies, and give a representative sample of the results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 0018-9294 1558-2531 1558-2531 |
| DOI: | 10.1109/TBME.2013.2243448 |