Capacity and Random-Coding Exponents for Channel Coding With Side Information

Capacity formulas and random-coding exponents are derived for a generalized family of Gel'fand-Pinsker coding problems. These exponents yield asymptotic upper bounds on the achievable log probability of error. In our model, information is to be reliably transmitted through a noisy channel with...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 53; no. 4; pp. 1326 - 1347
Main Authors Moulin, P., Ying Wang
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2007.892789

Cover

More Information
Summary:Capacity formulas and random-coding exponents are derived for a generalized family of Gel'fand-Pinsker coding problems. These exponents yield asymptotic upper bounds on the achievable log probability of error. In our model, information is to be reliably transmitted through a noisy channel with finite input and output alphabets and random state sequence, and the channel is selected by a hypothetical adversary. Partial information about the state sequence is available to the encoder, adversary, and decoder. The design of the transmitter is subject to a cost constraint. Two families of channels are considered: 1) compound discrete memoryless channels (CDMC), and 2) channels with arbitrary memory, subject to an additive cost constraint, or more generally, to a hard constraint on the conditional type of the channel output given the input. Both problems are closely connected. The random-coding exponent is achieved using a stacked binning scheme and a maximum penalized mutual information decoder, which may be thought of as an empirical generalized maximum a posteriori decoder. For channels with arbitrary memory, the random-coding exponents are larger than their CDMC counterparts. Applications of this study include watermarking, data hiding, communication in presence of partially known interferers, and problems such as broadcast channels, all of which involve the fundamental idea of binning
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2007.892789