Second-order sensitivity of eigenpairs in multiple parameter structures

This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms,and the second-order perturbat...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 30; no. 12; pp. 1475 - 1487
Main Author 陈塑寰 郭睿 孟广伟
Format Journal Article
LanguageEnglish
Published Heidelberg Shanghai University Press 01.12.2009
College of Mechanical Science and Engineering, Nanling Campus, Jilin University,Changchun 130025, P. R. China%State Key Laboratory of Automobile Dynamic Simulation, Nanling Campus, Jilin University,Changchun 130025, P. R. China
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/s10483-009-1201-z

Cover

More Information
Summary:This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms,and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed.With these formulations,the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation,and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs.A numerical example is given to demonstrate application and accuracy of the proposed method.
Bibliography:TH132.46
31-1650/O1
multiple parameter structures second-order sensitivity of eigenpairs efficient computational method
O151.21
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-009-1201-z