Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem

The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 46; no. 8; pp. 1771 - 1783
Main Authors Chou, Sheng-Kai, Jiau, Ming-Kai, Huang, Shih-Chia
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2016.2522471

Cover

Abstract The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
AbstractList The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs--S-PSO and binary PSO (BPSO)--and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
Author Shih-Chia Huang
Sheng-Kai Chou
Ming-Kai Jiau
Author_xml – sequence: 1
  givenname: Sheng-Kai
  surname: Chou
  fullname: Chou, Sheng-Kai
– sequence: 2
  givenname: Ming-Kai
  surname: Jiau
  fullname: Jiau, Ming-Kai
– sequence: 3
  givenname: Shih-Chia
  surname: Huang
  fullname: Huang, Shih-Chia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26890944$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URELID0BIyFKaNLP4MX6VZJUA0kqJtKGgsrxeD3HkGQ-2Nzx-PZ7MJkUKcHOt6-8c-d7zGhwMcXAAvMVogTFSH26W384XBGG-IIyQVuAX4IhgLhtCBDt4unNxCE5yvkP1yNpS8hU4JLUi1bZHIK9LtLcmF2_h2pXm3GS3hdcm1UZwcP3TpB5ejcX3_o8pPg5wJuplFa0J8OLXGGKan7qY4DqGez98h-XWwaVJY4yhGqd7bx28TnETXP8GvOxMyO5kX4_B18uLm-XnZnX16cvy46qxVJLSYNG2giDliBJcoS0VdU5OFaVth5VUZtNZYvGmjsidIYThVpKtFIhhzikV9Biczb5jij92Lhfd-2xdCGZwcZc1lpQxySbL_6OICU6xait6-gy9i7s01EEeKIzqLybq_Z7abXq31WPyvUm_9ePmKyBmwKaYc3Kdtr48rLEk44PGSE8x6ylmPcWs9zFXJX6mfDT_l-bdrPHOuSdetEhQJulfBSOvEQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2939050
crossref_primary_10_1145_3501295
crossref_primary_10_1109_TCYB_2022_3164767
crossref_primary_10_1109_TCYB_2019_2895319
crossref_primary_10_1016_j_asoc_2020_106618
crossref_primary_10_1016_j_cor_2022_105724
crossref_primary_10_1109_TCYB_2018_2832640
crossref_primary_10_1109_MCI_2022_3155330
crossref_primary_10_1007_s11135_024_01856_3
crossref_primary_10_3390_en11082059
crossref_primary_10_1007_s11116_020_10093_0
crossref_primary_10_1111_itor_12737
crossref_primary_10_1109_TCYB_2024_3381084
crossref_primary_10_3390_ijgi6030071
crossref_primary_10_1016_j_trb_2020_03_011
crossref_primary_10_1016_j_asoc_2019_105814
crossref_primary_10_1109_TITS_2024_3486152
crossref_primary_10_3390_app11177996
crossref_primary_10_1007_s12652_020_02364_6
crossref_primary_10_1007_s11704_018_7155_4
crossref_primary_10_1109_ACCESS_2019_2948197
crossref_primary_10_1287_serv_2020_0258
crossref_primary_10_1080_15472450_2018_1484739
crossref_primary_10_1109_TSC_2020_2975774
crossref_primary_10_1155_2018_3853012
crossref_primary_10_1109_TITS_2019_2899160
crossref_primary_10_1109_ACCESS_2019_2914924
crossref_primary_10_1142_S0218126624502797
crossref_primary_10_1016_j_neucom_2018_11_034
crossref_primary_10_1049_iet_its_2018_5127
crossref_primary_10_1186_s13638_018_1135_0
crossref_primary_10_1155_2018_2385936
crossref_primary_10_1016_j_trc_2025_105084
crossref_primary_10_1016_j_swevo_2022_101103
crossref_primary_10_1109_TCYB_2018_2844324
Cites_doi 10.1109/ICNN.1995.488968
10.1016/j.engappai.2004.02.008
10.1109/TCYB.2013.2257748
10.1109/CEC.2003.1299838
10.1016/j.trb.2011.05.017
10.1007/s001700300005
10.1287/opre.35.2.254
10.1080/01441647.2011.621557
10.1109/SIS.2003.1202250
10.1007/978-3-662-03315-9
10.1109/TSMCA.2008.923086
10.1109/TITS.2014.2334597
10.1109/TSMC.2012.2234943
10.1016/S0140-6736(02)11274-8
10.1109/TSMCA.2007.914796
10.1109/TFUZZ.2014.2374194
10.1090/qam/102435
10.1287/opre.1030.0106
10.1109/CEC.2006.1688424
10.1109/TSMCC.2011.2168560
10.1109/TCYB.2013.2282503
10.1109/TITS.2015.2421557
10.1016/j.swevo.2012.09.002
10.1109/CEC.2003.1299795
10.5539/jgg.v5n2p1
10.1109/TSMCC.2009.2023676
10.1109/GeoInformatics.2011.5981020
10.1109/TEVC.2005.857610
10.1016/j.swevo.2011.02.002
10.1109/GreenCom.2012.111
10.1109/MITS.2015.2417974
10.1109/TEVC.2009.2030331
10.1007/s00521-014-1743-5
10.1016/j.ejor.2012.05.028
10.1109/TCYB.2013.2265084
10.1109/TSMCC.2011.2148712
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2016.2522471
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
Aerospace Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1783
ExternalDocumentID 4120637341
26890944
10_1109_TCYB_2016_2522471
7407358
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 103-2221-E-027-030-MY2; MOST 103-2221-E-027-031-MY2
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c382t-17447209e297690d37522639334f1989abfc2c1b2676ea2251482d87051663373
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 12:15:32 EDT 2025
Sun Sep 28 10:46:48 EDT 2025
Sun Jun 29 16:45:48 EDT 2025
Sun Jul 13 03:08:08 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Wed Oct 01 05:14:34 EDT 2025
Wed Aug 27 02:59:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-17447209e297690d37522639334f1989abfc2c1b2676ea2251482d87051663373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26890944
PQID 1805104824
PQPubID 85422
PageCount 13
ParticipantIDs proquest_miscellaneous_1805763194
proquest_journals_1805104824
ieee_primary_7407358
crossref_citationtrail_10_1109_TCYB_2016_2522471
crossref_primary_10_1109_TCYB_2016_2522471
proquest_miscellaneous_1835585639
pubmed_primary_26890944
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Aug.
2016-8-00
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref14
ref31
ref33
ref11
ref32
bellman (ref36) 1958; 16
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref26
ref25
ref20
ref41
ref21
janaa (ref30) 2012
amini (ref23) 2010; 4
ref28
ref27
ref29
ref8
(ref40) 2016
ref7
ref9
ref4
ref6
ref5
wang (ref13) 2003; 21
saranow (ref3) 2006
ho (ref22) 2008; 38
References_xml – ident: ref19
  doi: 10.1109/ICNN.1995.488968
– start-page: 212
  year: 2012
  ident: ref30
  article-title: Particle swarm optimization with adaptive mutation in local best of particles
  publication-title: Proc Int Congr Informat Environ Energy Appl
– ident: ref14
  doi: 10.1016/j.engappai.2004.02.008
– ident: ref17
  doi: 10.1109/TCYB.2013.2257748
– ident: ref32
  doi: 10.1109/CEC.2003.1299838
– ident: ref11
  doi: 10.1016/j.trb.2011.05.017
– volume: 21
  start-page: 38
  year: 2003
  ident: ref13
  article-title: An effective hybrid heuristic for flow shop scheduling
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700300005
– ident: ref35
  doi: 10.1287/opre.35.2.254
– year: 2016
  ident: ref40
  publication-title: Taipei City Traffic Engineering Office
– ident: ref2
  doi: 10.1080/01441647.2011.621557
– ident: ref31
  doi: 10.1109/SIS.2003.1202250
– ident: ref34
  doi: 10.1007/978-3-662-03315-9
– ident: ref24
  doi: 10.1109/TSMCA.2008.923086
– ident: ref8
  doi: 10.1109/TITS.2014.2334597
– ident: ref16
  doi: 10.1109/TSMC.2012.2234943
– volume: 4
  start-page: 118
  year: 2010
  ident: ref23
  article-title: A PSO approach for solving VRPTW with real case study
  publication-title: Int J Res Rev Appl Sci
– ident: ref1
  doi: 10.1016/S0140-6736(02)11274-8
– volume: 38
  start-page: 288
  year: 2008
  ident: ref22
  article-title: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems
  publication-title: IEEE Trans Syst Man Cybern A Syst Humans
  doi: 10.1109/TSMCA.2007.914796
– ident: ref7
  doi: 10.1109/TFUZZ.2014.2374194
– volume: 16
  start-page: 87
  year: 1958
  ident: ref36
  article-title: On a routing problem
  publication-title: Quart Appl Math
  doi: 10.1090/qam/102435
– ident: ref10
  doi: 10.1287/opre.1030.0106
– ident: ref29
  doi: 10.1109/CEC.2006.1688424
– ident: ref20
  doi: 10.1109/TSMCC.2011.2168560
– ident: ref18
  doi: 10.1109/TCYB.2013.2282503
– ident: ref5
  doi: 10.1109/TITS.2015.2421557
– ident: ref25
  doi: 10.1016/j.swevo.2012.09.002
– year: 2006
  ident: ref3
  article-title: Carpooling for grown-ups high gas prices, new services give ride-sharing a boost, rating your fellow rider
  publication-title: Wall Street J
– ident: ref33
  doi: 10.1109/CEC.2003.1299795
– ident: ref12
  doi: 10.1109/TSMCA.2008.923086
– ident: ref39
  doi: 10.5539/jgg.v5n2p1
– ident: ref15
  doi: 10.1109/TSMCC.2009.2023676
– ident: ref38
  doi: 10.1109/GeoInformatics.2011.5981020
– ident: ref37
  doi: 10.1109/TEVC.2005.857610
– ident: ref41
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref4
  doi: 10.1109/GreenCom.2012.111
– ident: ref6
  doi: 10.1109/MITS.2015.2417974
– ident: ref27
  doi: 10.1109/TEVC.2009.2030331
– ident: ref26
  doi: 10.1007/s00521-014-1743-5
– ident: ref9
  doi: 10.1016/j.ejor.2012.05.028
– ident: ref21
  doi: 10.1109/TCYB.2013.2265084
– ident: ref28
  doi: 10.1109/TSMCC.2011.2148712
SSID ssj0000816898
Score 2.2812169
Snippet The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1771
SubjectTerms Algorithms
Artificial intelligence
Car pools
Carpool service problem (CSP)
Computer simulation
Encoding
Exploration
Genetic algorithms
intelligent carpool system (ICS)
Mobile handsets
Optimization
Particle swarm optimization
set-based particle swarm optimization (S-PSO)
Stochasticity
Swarm intelligence
Vehicles
Title Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem
URI https://ieeexplore.ieee.org/document/7407358
https://www.ncbi.nlm.nih.gov/pubmed/26890944
https://www.proquest.com/docview/1805104824
https://www.proquest.com/docview/1805763194
https://www.proquest.com/docview/1835585639
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLc4nvYyxhjQwaZM2sNA65E2aZs-wmkITftAOpDgqUrTVEjAFXE9TdpfPzvJVQJtp71FiqMmtWP_4jg2wEeetzVauTK2qpbkrcpj1SYqbqVuFG9MW_sA2R_52aX8epVdrcHn4S2MtdYFn9kxNd1dftOZBbnKjgo8fYhMjWBUqNy_1Rr8Ka6AhCt9m2IjRlRRhEvMhJdHF5PrE4rjyscpAg5UyJQEGOnxcCOfWCRXYuXfaNNZndMN-L6crw82uR0v-npsfj9L5fi_C3oFLwP8ZMdeXjZhzc5ew2bY4HP2KWShPtiC-bTvzI2mNM5savv4BM1dw86DpLHpL_14z36iwrkPLzmZp8DGN7KPzEf3-S5Exmza3ZHzgiHiZBPtanuxoKnYuS9r8wYuT79cTM7iUKEhNkKlfYzHGVmkvLQp8Zs3oiA4J0ohZEvBWLpuTWqSGpmRW42qg7KONqgisgSRjijENqzPupndBZZJkfOWtzhAySbNNBLZAtGN1nlteBEBX3KpMiF9OVXRuKvcMYaXFfG4Ih5XgccRHA5DHnzujlXEW8SfgTCwJoL9pShUYXfPq0SRKsOlyAg-DN24L-myRc9st_A0qLuTciUNJbfP8IdFsOPFbPj-Ujrf_n1ee_CCZu9DEfdhvX9c2HcIj_r6vdsXfwCEyQYf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGeIAX9gVb2YBM4gEQvaVN-vXITkzHdhuT7iaNpypNU01iu6JdT5P2189OcpVAMPEWKY6a1I79i-PYAO952lRo5YrQ5JUkb1Ua5k2Uh41Udc5r3VQuQPYsHV3I48vkcgU-929hjDE2-MwMqGnv8utWL8hVdpDh6UMk-RN4mkgpE_daq_eo2BIStvhtjI0QcUXmrzEjXhxMhz8OKZIrHcQIOVAlUxpgpMfjjfzNJtkiK__Gm9buHK3B6XLGLtzk52DRVQN9_0cyx_9d0jq88ACUfXESswErZrYJG36Lz9kHn4f64xbMJ12rrxQlcmYT04WHaPBqdu5ljU3u1O0N-44q58a_5WSOAhtjspDMxfe5LsTGbNJek_uCIeZkQ2WrezGvq9i5K2zzEi6Ovk6Ho9DXaAi1yOMuxAONzGJemJg4zmuREaAThRCyoXAsVTU61lGFzEiNQuVBeUdrVBJJhFhHZOIVrM7amdkBlkiR8oY3OCCXdZwoJDIZ4hul0krzLAC-5FKpfQJzqqNxXdqDDC9K4nFJPC49jwP41A_55bJ3PEa8RfzpCT1rAthbikLp9_e8jHJSZrgUGcB-3407k65b1My0C0eD2jsqHqWh9PYJ_rAAtp2Y9d9fSufrv8_rHTwbTU_H5fjb2ckuPKeVuMDEPVjtbhfmDYKlrnpr98gDYl4JbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Set-Based+Particle+Swarm+Optimization+Based+on+Local+Exploration+for+Solving+the+Carpool+Service+Problem&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sheng-Kai+Chou&rft.au=Ming-Kai+Jiau&rft.au=Shih-Chia+Huang&rft.date=2016-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=46&rft.issue=8&rft.spage=1771&rft.epage=1783&rft_id=info:doi/10.1109%2FTCYB.2016.2522471&rft_id=info%3Apmid%2F26890944&rft.externalDocID=7407358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon