Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem
The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It i...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 46; no. 8; pp. 1771 - 1783 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2016.2522471 |
Cover
| Abstract | The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP. |
|---|---|
| AbstractList | The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs--S-PSO and binary PSO (BPSO)--and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP. The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP. |
| Author | Shih-Chia Huang Sheng-Kai Chou Ming-Kai Jiau |
| Author_xml | – sequence: 1 givenname: Sheng-Kai surname: Chou fullname: Chou, Sheng-Kai – sequence: 2 givenname: Ming-Kai surname: Jiau fullname: Jiau, Ming-Kai – sequence: 3 givenname: Shih-Chia surname: Huang fullname: Huang, Shih-Chia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26890944$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTtvFDEUhS0URELID0BIyFKaNLP4MX6VZJUA0kqJtKGgsrxeD3HkGQ-2Nzx-PZ7MJkUKcHOt6-8c-d7zGhwMcXAAvMVogTFSH26W384XBGG-IIyQVuAX4IhgLhtCBDt4unNxCE5yvkP1yNpS8hU4JLUi1bZHIK9LtLcmF2_h2pXm3GS3hdcm1UZwcP3TpB5ejcX3_o8pPg5wJuplFa0J8OLXGGKan7qY4DqGez98h-XWwaVJY4yhGqd7bx28TnETXP8GvOxMyO5kX4_B18uLm-XnZnX16cvy46qxVJLSYNG2giDliBJcoS0VdU5OFaVth5VUZtNZYvGmjsidIYThVpKtFIhhzikV9Biczb5jij92Lhfd-2xdCGZwcZc1lpQxySbL_6OICU6xait6-gy9i7s01EEeKIzqLybq_Z7abXq31WPyvUm_9ePmKyBmwKaYc3Kdtr48rLEk44PGSE8x6ylmPcWs9zFXJX6mfDT_l-bdrPHOuSdetEhQJulfBSOvEQ |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2939050 crossref_primary_10_1145_3501295 crossref_primary_10_1109_TCYB_2022_3164767 crossref_primary_10_1109_TCYB_2019_2895319 crossref_primary_10_1016_j_asoc_2020_106618 crossref_primary_10_1016_j_cor_2022_105724 crossref_primary_10_1109_TCYB_2018_2832640 crossref_primary_10_1109_MCI_2022_3155330 crossref_primary_10_1007_s11135_024_01856_3 crossref_primary_10_3390_en11082059 crossref_primary_10_1007_s11116_020_10093_0 crossref_primary_10_1111_itor_12737 crossref_primary_10_1109_TCYB_2024_3381084 crossref_primary_10_3390_ijgi6030071 crossref_primary_10_1016_j_trb_2020_03_011 crossref_primary_10_1016_j_asoc_2019_105814 crossref_primary_10_1109_TITS_2024_3486152 crossref_primary_10_3390_app11177996 crossref_primary_10_1007_s12652_020_02364_6 crossref_primary_10_1007_s11704_018_7155_4 crossref_primary_10_1109_ACCESS_2019_2948197 crossref_primary_10_1287_serv_2020_0258 crossref_primary_10_1080_15472450_2018_1484739 crossref_primary_10_1109_TSC_2020_2975774 crossref_primary_10_1155_2018_3853012 crossref_primary_10_1109_TITS_2019_2899160 crossref_primary_10_1109_ACCESS_2019_2914924 crossref_primary_10_1142_S0218126624502797 crossref_primary_10_1016_j_neucom_2018_11_034 crossref_primary_10_1049_iet_its_2018_5127 crossref_primary_10_1186_s13638_018_1135_0 crossref_primary_10_1155_2018_2385936 crossref_primary_10_1016_j_trc_2025_105084 crossref_primary_10_1016_j_swevo_2022_101103 crossref_primary_10_1109_TCYB_2018_2844324 |
| Cites_doi | 10.1109/ICNN.1995.488968 10.1016/j.engappai.2004.02.008 10.1109/TCYB.2013.2257748 10.1109/CEC.2003.1299838 10.1016/j.trb.2011.05.017 10.1007/s001700300005 10.1287/opre.35.2.254 10.1080/01441647.2011.621557 10.1109/SIS.2003.1202250 10.1007/978-3-662-03315-9 10.1109/TSMCA.2008.923086 10.1109/TITS.2014.2334597 10.1109/TSMC.2012.2234943 10.1016/S0140-6736(02)11274-8 10.1109/TSMCA.2007.914796 10.1109/TFUZZ.2014.2374194 10.1090/qam/102435 10.1287/opre.1030.0106 10.1109/CEC.2006.1688424 10.1109/TSMCC.2011.2168560 10.1109/TCYB.2013.2282503 10.1109/TITS.2015.2421557 10.1016/j.swevo.2012.09.002 10.1109/CEC.2003.1299795 10.5539/jgg.v5n2p1 10.1109/TSMCC.2009.2023676 10.1109/GeoInformatics.2011.5981020 10.1109/TEVC.2005.857610 10.1016/j.swevo.2011.02.002 10.1109/GreenCom.2012.111 10.1109/MITS.2015.2417974 10.1109/TEVC.2009.2030331 10.1007/s00521-014-1743-5 10.1016/j.ejor.2012.05.028 10.1109/TCYB.2013.2265084 10.1109/TSMCC.2011.2148712 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2016.2522471 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database Aerospace Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1783 |
| ExternalDocumentID | 4120637341 26890944 10_1109_TCYB_2016_2522471 7407358 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 103-2221-E-027-030-MY2; MOST 103-2221-E-027-031-MY2 funderid: 10.13039/501100004663 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c382t-17447209e297690d37522639334f1989abfc2c1b2676ea2251482d87051663373 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 12:15:32 EDT 2025 Sun Sep 28 10:46:48 EDT 2025 Sun Jun 29 16:45:48 EDT 2025 Sun Jul 13 03:08:08 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Oct 01 05:14:34 EDT 2025 Wed Aug 27 02:59:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-17447209e297690d37522639334f1989abfc2c1b2676ea2251482d87051663373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26890944 |
| PQID | 1805104824 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1805763194 proquest_journals_1805104824 ieee_primary_7407358 crossref_citationtrail_10_1109_TCYB_2016_2522471 crossref_primary_10_1109_TCYB_2016_2522471 proquest_miscellaneous_1835585639 pubmed_primary_26890944 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Aug. 2016-8-00 2016-08-00 20160801 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref14 ref31 ref33 ref11 ref32 bellman (ref36) 1958; 16 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref41 ref21 janaa (ref30) 2012 amini (ref23) 2010; 4 ref28 ref27 ref29 ref8 (ref40) 2016 ref7 ref9 ref4 ref6 ref5 wang (ref13) 2003; 21 saranow (ref3) 2006 ho (ref22) 2008; 38 |
| References_xml | – ident: ref19 doi: 10.1109/ICNN.1995.488968 – start-page: 212 year: 2012 ident: ref30 article-title: Particle swarm optimization with adaptive mutation in local best of particles publication-title: Proc Int Congr Informat Environ Energy Appl – ident: ref14 doi: 10.1016/j.engappai.2004.02.008 – ident: ref17 doi: 10.1109/TCYB.2013.2257748 – ident: ref32 doi: 10.1109/CEC.2003.1299838 – ident: ref11 doi: 10.1016/j.trb.2011.05.017 – volume: 21 start-page: 38 year: 2003 ident: ref13 article-title: An effective hybrid heuristic for flow shop scheduling publication-title: Int J Adv Manuf Technol doi: 10.1007/s001700300005 – ident: ref35 doi: 10.1287/opre.35.2.254 – year: 2016 ident: ref40 publication-title: Taipei City Traffic Engineering Office – ident: ref2 doi: 10.1080/01441647.2011.621557 – ident: ref31 doi: 10.1109/SIS.2003.1202250 – ident: ref34 doi: 10.1007/978-3-662-03315-9 – ident: ref24 doi: 10.1109/TSMCA.2008.923086 – ident: ref8 doi: 10.1109/TITS.2014.2334597 – ident: ref16 doi: 10.1109/TSMC.2012.2234943 – volume: 4 start-page: 118 year: 2010 ident: ref23 article-title: A PSO approach for solving VRPTW with real case study publication-title: Int J Res Rev Appl Sci – ident: ref1 doi: 10.1016/S0140-6736(02)11274-8 – volume: 38 start-page: 288 year: 2008 ident: ref22 article-title: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems publication-title: IEEE Trans Syst Man Cybern A Syst Humans doi: 10.1109/TSMCA.2007.914796 – ident: ref7 doi: 10.1109/TFUZZ.2014.2374194 – volume: 16 start-page: 87 year: 1958 ident: ref36 article-title: On a routing problem publication-title: Quart Appl Math doi: 10.1090/qam/102435 – ident: ref10 doi: 10.1287/opre.1030.0106 – ident: ref29 doi: 10.1109/CEC.2006.1688424 – ident: ref20 doi: 10.1109/TSMCC.2011.2168560 – ident: ref18 doi: 10.1109/TCYB.2013.2282503 – ident: ref5 doi: 10.1109/TITS.2015.2421557 – ident: ref25 doi: 10.1016/j.swevo.2012.09.002 – year: 2006 ident: ref3 article-title: Carpooling for grown-ups high gas prices, new services give ride-sharing a boost, rating your fellow rider publication-title: Wall Street J – ident: ref33 doi: 10.1109/CEC.2003.1299795 – ident: ref12 doi: 10.1109/TSMCA.2008.923086 – ident: ref39 doi: 10.5539/jgg.v5n2p1 – ident: ref15 doi: 10.1109/TSMCC.2009.2023676 – ident: ref38 doi: 10.1109/GeoInformatics.2011.5981020 – ident: ref37 doi: 10.1109/TEVC.2005.857610 – ident: ref41 doi: 10.1016/j.swevo.2011.02.002 – ident: ref4 doi: 10.1109/GreenCom.2012.111 – ident: ref6 doi: 10.1109/MITS.2015.2417974 – ident: ref27 doi: 10.1109/TEVC.2009.2030331 – ident: ref26 doi: 10.1007/s00521-014-1743-5 – ident: ref9 doi: 10.1016/j.ejor.2012.05.028 – ident: ref21 doi: 10.1109/TCYB.2013.2265084 – ident: ref28 doi: 10.1109/TSMCC.2011.2148712 |
| SSID | ssj0000816898 |
| Score | 2.2812169 |
| Snippet | The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1771 |
| SubjectTerms | Algorithms Artificial intelligence Car pools Carpool service problem (CSP) Computer simulation Encoding Exploration Genetic algorithms intelligent carpool system (ICS) Mobile handsets Optimization Particle swarm optimization set-based particle swarm optimization (S-PSO) Stochasticity Swarm intelligence Vehicles |
| Title | Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem |
| URI | https://ieeexplore.ieee.org/document/7407358 https://www.ncbi.nlm.nih.gov/pubmed/26890944 https://www.proquest.com/docview/1805104824 https://www.proquest.com/docview/1805763194 https://www.proquest.com/docview/1835585639 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLc4nvYyxhjQwaZM2sNA65E2aZs-wmkITftAOpDgqUrTVEjAFXE9TdpfPzvJVQJtp71FiqMmtWP_4jg2wEeetzVauTK2qpbkrcpj1SYqbqVuFG9MW_sA2R_52aX8epVdrcHn4S2MtdYFn9kxNd1dftOZBbnKjgo8fYhMjWBUqNy_1Rr8Ka6AhCt9m2IjRlRRhEvMhJdHF5PrE4rjyscpAg5UyJQEGOnxcCOfWCRXYuXfaNNZndMN-L6crw82uR0v-npsfj9L5fi_C3oFLwP8ZMdeXjZhzc5ew2bY4HP2KWShPtiC-bTvzI2mNM5savv4BM1dw86DpLHpL_14z36iwrkPLzmZp8DGN7KPzEf3-S5Exmza3ZHzgiHiZBPtanuxoKnYuS9r8wYuT79cTM7iUKEhNkKlfYzHGVmkvLQp8Zs3oiA4J0ohZEvBWLpuTWqSGpmRW42qg7KONqgisgSRjijENqzPupndBZZJkfOWtzhAySbNNBLZAtGN1nlteBEBX3KpMiF9OVXRuKvcMYaXFfG4Ih5XgccRHA5DHnzujlXEW8SfgTCwJoL9pShUYXfPq0SRKsOlyAg-DN24L-myRc9st_A0qLuTciUNJbfP8IdFsOPFbPj-Ujrf_n1ee_CCZu9DEfdhvX9c2HcIj_r6vdsXfwCEyQYf |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGeIAX9gVb2YBM4gEQvaVN-vXITkzHdhuT7iaNpypNU01iu6JdT5P2189OcpVAMPEWKY6a1I79i-PYAO952lRo5YrQ5JUkb1Ua5k2Uh41Udc5r3VQuQPYsHV3I48vkcgU-929hjDE2-MwMqGnv8utWL8hVdpDh6UMk-RN4mkgpE_daq_eo2BIStvhtjI0QcUXmrzEjXhxMhz8OKZIrHcQIOVAlUxpgpMfjjfzNJtkiK__Gm9buHK3B6XLGLtzk52DRVQN9_0cyx_9d0jq88ACUfXESswErZrYJG36Lz9kHn4f64xbMJ12rrxQlcmYT04WHaPBqdu5ljU3u1O0N-44q58a_5WSOAhtjspDMxfe5LsTGbNJek_uCIeZkQ2WrezGvq9i5K2zzEi6Ovk6Ho9DXaAi1yOMuxAONzGJemJg4zmuREaAThRCyoXAsVTU61lGFzEiNQuVBeUdrVBJJhFhHZOIVrM7amdkBlkiR8oY3OCCXdZwoJDIZ4hul0krzLAC-5FKpfQJzqqNxXdqDDC9K4nFJPC49jwP41A_55bJ3PEa8RfzpCT1rAthbikLp9_e8jHJSZrgUGcB-3407k65b1My0C0eD2jsqHqWh9PYJ_rAAtp2Y9d9fSufrv8_rHTwbTU_H5fjb2ckuPKeVuMDEPVjtbhfmDYKlrnpr98gDYl4JbA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Set-Based+Particle+Swarm+Optimization+Based+on+Local+Exploration+for+Solving+the+Carpool+Service+Problem&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sheng-Kai+Chou&rft.au=Ming-Kai+Jiau&rft.au=Shih-Chia+Huang&rft.date=2016-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=46&rft.issue=8&rft.spage=1771&rft.epage=1783&rft_id=info:doi/10.1109%2FTCYB.2016.2522471&rft_id=info%3Apmid%2F26890944&rft.externalDocID=7407358 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |