Resolving set and exchange property in nanotube

Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has dou...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 9; pp. 20305 - 20323
Main Authors Koam, Ali N. A., Ali, Sikander, Ahmad, Ali, Azeem, Muhammad, Jamil, Muhammad Kamran
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20231035

Cover

More Information
Summary:Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has double resolving set. A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials science. Nano-structures are very important due to their thickness. In this article, we have discussed the metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension. We also check that the exchange property is also held for this structure.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20231035