Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces
Let $ \mathbb{S}^{n-1} $ denotes the unit sphere in $ \mathbb{R}^n $ equipped with the normalized Lebesgue measure. Let $ \Phi \in L^r(\mathbb{S}^{n-1}) $ be a homogeneous function of degree zero. The variable Marcinkiewicz fractional integral operator is defined as <disp-formula> <tex-math...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 22338 - 22353 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.20231139 |
Cover
Summary: | Let $ \mathbb{S}^{n-1} $ denotes the unit sphere in $ \mathbb{R}^n $ equipped with the normalized Lebesgue measure. Let $ \Phi \in L^r(\mathbb{S}^{n-1}) $ be a homogeneous function of degree zero. The variable Marcinkiewicz fractional integral operator is defined as
<disp-formula> <tex-math id="FE1"> \begin{document}$ \mu _{\Phi} (f)(z_1) = \left( \int \limits _0 ^ \infty \left|\int \limits _{|z_1-z_2| \leq s} \frac{\Phi(z_1-z_2)}{|z_1-z_2|^{n-1-\zeta(z_1)}}f(z_2)dz_2\right|^2 \frac{ds}{s^3}\right)^{\frac{1}{2}}. $\end{document} </tex-math></disp-formula>
The Marcinkiewicz fractional operator of variable order $ \zeta(z_1) $ is shown to be bounded from the grand Herz-Morrey spaces $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, \rho, q(\cdot)}(\mathbb{R}^n)} $ where
<disp-formula> <tex-math id="FE2"> \begin{document}$ \rho = (1+|z_1|)^{-\lambda} $\end{document} </tex-math></disp-formula>
and
<disp-formula> <tex-math id="FE3"> \begin{document}$ {1 \over q(z_1)} = {1 \over p(z_1)}-{\zeta(z_1) \over n} $\end{document} </tex-math></disp-formula>
when $ p(z_1) $ is not necessarily constant at infinity. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231139 |