Performance analysis of high-static-low-dynamic stiffness vibration isolator with time-delayed displacement feedback

The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness (HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 24; no. 10; pp. 2294 - 2305
Main Authors Cheng, Chun, Li, Shun-ming, Wang, Yong, Jiang, Xing-xing
Format Journal Article
LanguageEnglish
Published Changsha Central South University 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2899
2227-5223
DOI10.1007/s11771-017-3641-3

Cover

More Information
Summary:The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness (HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-017-3641-3