The Hubble Constant from Infrared Surface Brightness Fluctuation Distances

We present a measurement of the Hubble constant H 0 from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the WFC3/IR on the Hubble Space Telescope (HST). The sample is drawn from several independent HST imaging programs using the...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 911; no. 1; p. 65
Main Authors Blakeslee, John P., Jensen, Joseph B., Ma, Chung-Pei, Milne, Peter A., Greene, Jenny E.
Format Journal Article
LanguageEnglish
Published Philadelphia IOP Publishing 01.04.2021
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/abe86a

Cover

More Information
Summary:We present a measurement of the Hubble constant H 0 from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the WFC3/IR on the Hubble Space Telescope (HST). The sample is drawn from several independent HST imaging programs using the F110W bandpass, with the majority of the galaxies being selected from the MASSIVE survey. The distances reach the Hubble flow with a median statistical uncertainty per measurement of 4%. We construct the Hubble diagram with these IR SBF distances and constrain H 0 using four different treatments of the galaxy velocities. For the SBF zero-point calibration, we use both the existing tie to Cepheid variables, updated for consistency with the latest determination of the distance to the Large Magellanic Cloud from detached eclipsing binaries, and a new tie to the tip of the red giant branch (TRGB) calibrated from the maser distance to NGC 4258. These two SBF calibrations are consistent with each other and with theoretical predictions from stellar population models. From a weighted average of the Cepheid and TRGB calibrations, we derive H 0 = 73.3 ± 0.7 ± 2.4 km s −1 Mpc −1 , where the error bars reflect the statistical and systematic uncertainties. This result accords well with recent measurements of H 0 from Type Ia supernovae, time delays in multiply lensed quasars, and water masers. The systematic uncertainty could be reduced to below 2% by calibrating the SBF method with precision TRGB distances for a statistical sample of massive early-type galaxies out to the Virgo cluster measured with the James Webb Space Telescope.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abe86a