A Magnetometer-Only Attitude Determination Strategy for Small Satellites: Design of the Algorithm and Hardware-in-the-Loop Testing

Attitude determination represents a fundamental task for spacecraft. Achieving this task on small satellites, and nanosatellites in particular, is further challenging, because the limited power and computational resources available on-board, together with the low development budget, set strict const...

Full description

Saved in:
Bibliographic Details
Published inAerospace Vol. 7; no. 1; p. 3
Main Authors Carletta, Stefano, Teofilatto, Paolo, Farissi, M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
Subjects
Online AccessGet full text
ISSN2226-4310
2226-4310
DOI10.3390/aerospace7010003

Cover

More Information
Summary:Attitude determination represents a fundamental task for spacecraft. Achieving this task on small satellites, and nanosatellites in particular, is further challenging, because the limited power and computational resources available on-board, together with the low development budget, set strict constraints on the selection of the sensors and the complexity of the algorithms. Attitude determination is obtained here from the only measurements of a three-axis magnetometer and a model of the Geomagnetic field, stored on the on-board computer. First, the angular rates are estimated and processed using a second-order low-pass Butterworth filter, then they are used as an input, along with Geomagnetic field data, to estimate the attitude matrix using an unsymmetrical TRIAD. The computational efficiency is enhanced by arranging complex matrix operations into a form of the Faddeev algorithm, which is implemented using systolic array architecture on the FPGA core of a CubeSat on-board computer. The performance and the robustness of the algorithm are evaluated by means of numerical analyses in MATLAB Simulink, showing pointing and angular rate accuracy below 10° and 0.2°/s. The algorithm implemented on FPGA is verified by Hardware-in-the-loop simulation, confirming the results from numerical analyses and efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace7010003