A fractional Landweber iterative regularization method for stable analytic continuation

In this paper, we consider the problem of analytic continuation of the analytic function $g(z) = g(x+iy)$ on a strip domain Ω = $\{z = x+iy\in \mathbb{C}|\, x\in\mathbb{R}, 0 < y < y_0\}$, where the data is given only on the line $y = 0$. This problem is a severely ill-posed problem. We propos...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 1; pp. 404 - 419
Main Authors Yang, Fan, Wang, Qianchao, Li, Xiaoxiao
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021025

Cover

Abstract In this paper, we consider the problem of analytic continuation of the analytic function $g(z) = g(x+iy)$ on a strip domain Ω = $\{z = x+iy\in \mathbb{C}|\, x\in\mathbb{R}, 0 < y < y_0\}$, where the data is given only on the line $y = 0$. This problem is a severely ill-posed problem. We propose the fraction Landweber iterative regularization method to deal with this problem. Under the a priori and a posteriori regularization parameter choice rule, we all obtain the error estimates between the regularization solution and the exact solution. Some numerical examples are given to verify the efficiency and accuracy of the proposed methods.
AbstractList In this paper, we consider the problem of analytic continuation of the analytic function $g(z)=g(x+iy)$ on a strip domain Ω=$\{z=x+iy\in \mathbb{C}|\,x\in\mathbb{R},0< y < y_0\}$, where the data is given only on the line $y=0$. This problem is a severely ill-posed problem. We propose the fraction Landweber iterative regularization method to deal with this problem. Under the a priori and a posteriori regularization parameter choice rule, we all obtain the error estimates between the regularization solution and the exact solution. Some numerical examples are given to verify the efficiency and accuracy of the proposed methods.
Author Wang, Qianchao
Li, Xiaoxiao
Yang, Fan
Author_xml – sequence: 1
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
– sequence: 2
  givenname: Qianchao
  surname: Wang
  fullname: Wang, Qianchao
– sequence: 3
  givenname: Xiaoxiao
  surname: Li
  fullname: Li, Xiaoxiao
BookMark eNptUNtKAzEQDaJgrb75AfkAq7ntJvtYxBsUfFF8DJPspI1sN5JNFf16t1VBRBiYYeacw5lzRPb71CMhp5ydy0aqizWU1blggjNR7ZGJUFrO6saY_V_zITkZhmfGRpRQQqsJeZrTkMGXmHro6AL69g0dZhoLZijxFWnG5aaDHD9gC6JrLKvU0pAyHQq4DimMzPcSPfWpL7Hf7HDH5CBAN-DJd5-Sx-urh8vb2eL-5u5yvph5qU2ZOah95aUIxinktRKtq_14aiWOZYysGMqGBeV00EY5w3WoQwuNN5y5xskpufvSbRM825cc15DfbYJod4uUlxbyaK5Dq6vAsTEOuZaKOQkMW-VZYF7oqtJm1BJfWj6nYcgYrI9l903JEDvLmd0mbbdJ2--kR9LZH9KPiX_hn6rhhAc
CitedBy_id crossref_primary_10_1016_j_camwa_2023_07_009
crossref_primary_10_3390_math9182255
crossref_primary_10_1007_s11075_024_01815_x
crossref_primary_10_3390_sym14061209
crossref_primary_10_1016_j_amc_2024_128948
Cites_doi 10.1186/s13661-017-0823-8
10.1080/17415977.2013.780167
10.1016/j.matcom.2011.08.005
10.1137/0911007
10.1080/17415977.2017.1384825
10.1007/s11075-019-00734-6
10.1063/1.527285
10.1186/s13662-017-1423-8
10.1016/j.apnum.2017.08.004
10.1088/1361-6420/ab730b
10.1515/jiip.2000.8.1.23
10.1186/s13661-016-0733-1
10.1080/00207160.2014.920500
10.11948/20180279
10.1016/j.cam.2010.12.017
10.1137/080730196
10.1515/fca-2019-0039
10.1016/j.matcom.2010.11.011
10.1007/s00211-005-0622-5
10.1007/978-94-009-1740-8
10.1090/mmono/064
10.1088/0266-5611/24/4/045005
10.1016/j.amc.2014.01.053
10.1016/j.cam.2011.12.016
10.1088/0266-5611/24/6/065003
10.1016/j.cam.2017.06.014
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021025
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 419
ExternalDocumentID oai_doaj_org_article_75f1e98be17340b3a0ed4c0f0c275578
10_3934_math_2021025
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-ba6c5c32f8b4e1642db6cc37d3ed3e88350e390f4b7f784b817f6fda9c810b9b3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:18:19 EDT 2025
Tue Jul 01 03:56:46 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ba6c5c32f8b4e1642db6cc37d3ed3e88350e390f4b7f784b817f6fda9c810b9b3
OpenAccessLink https://doaj.org/article/75f1e98be17340b3a0ed4c0f0c275578
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_75f1e98be17340b3a0ed4c0f0c275578
crossref_citationtrail_10_3934_math_2021025
crossref_primary_10_3934_math_2021025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021025-4
key-10.3934/math.2021025-5
key-10.3934/math.2021025-2
key-10.3934/math.2021025-3
key-10.3934/math.2021025-1
key-10.3934/math.2021025-20
key-10.3934/math.2021025-21
key-10.3934/math.2021025-22
key-10.3934/math.2021025-23
key-10.3934/math.2021025-24
key-10.3934/math.2021025-25
key-10.3934/math.2021025-26
key-10.3934/math.2021025-27
key-10.3934/math.2021025-8
key-10.3934/math.2021025-9
key-10.3934/math.2021025-10
key-10.3934/math.2021025-6
key-10.3934/math.2021025-11
key-10.3934/math.2021025-7
key-10.3934/math.2021025-12
key-10.3934/math.2021025-13
key-10.3934/math.2021025-14
key-10.3934/math.2021025-15
key-10.3934/math.2021025-16
key-10.3934/math.2021025-17
key-10.3934/math.2021025-18
key-10.3934/math.2021025-19
References_xml – ident: key-10.3934/math.2021025-20
  doi: 10.1186/s13661-017-0823-8
– ident: key-10.3934/math.2021025-6
  doi: 10.1080/17415977.2013.780167
– ident: key-10.3934/math.2021025-7
  doi: 10.1016/j.matcom.2011.08.005
– ident: key-10.3934/math.2021025-2
  doi: 10.1137/0911007
– ident: key-10.3934/math.2021025-22
  doi: 10.1080/17415977.2017.1384825
– ident: key-10.3934/math.2021025-23
  doi: 10.1007/s11075-019-00734-6
– ident: key-10.3934/math.2021025-3
  doi: 10.1063/1.527285
– ident: key-10.3934/math.2021025-19
  doi: 10.1186/s13662-017-1423-8
– ident: key-10.3934/math.2021025-25
  doi: 10.1016/j.apnum.2017.08.004
– ident: key-10.3934/math.2021025-11
  doi: 10.1088/1361-6420/ab730b
– ident: key-10.3934/math.2021025-4
  doi: 10.1515/jiip.2000.8.1.23
– ident: key-10.3934/math.2021025-21
  doi: 10.1186/s13661-016-0733-1
– ident: key-10.3934/math.2021025-15
  doi: 10.1080/00207160.2014.920500
– ident: key-10.3934/math.2021025-24
  doi: 10.11948/20180279
– ident: key-10.3934/math.2021025-13
  doi: 10.1016/j.cam.2010.12.017
– ident: key-10.3934/math.2021025-16
  doi: 10.1137/080730196
– ident: key-10.3934/math.2021025-9
  doi: 10.1515/fca-2019-0039
– ident: key-10.3934/math.2021025-12
  doi: 10.1016/j.matcom.2010.11.011
– ident: key-10.3934/math.2021025-10
  doi: 10.1007/s00211-005-0622-5
– ident: key-10.3934/math.2021025-18
  doi: 10.1007/978-94-009-1740-8
– ident: key-10.3934/math.2021025-1
  doi: 10.1090/mmono/064
– ident: key-10.3934/math.2021025-26
  doi: 10.1088/0266-5611/24/4/045005
– ident: key-10.3934/math.2021025-14
  doi: 10.1016/j.amc.2014.01.053
– ident: key-10.3934/math.2021025-8
  doi: 10.1016/j.cam.2011.12.016
– ident: key-10.3934/math.2021025-27
– ident: key-10.3934/math.2021025-5
  doi: 10.1088/0266-5611/24/6/065003
– ident: key-10.3934/math.2021025-17
  doi: 10.1016/j.cam.2017.06.014
SSID ssj0002124274
Score 2.183668
Snippet In this paper, we consider the problem of analytic continuation of the analytic function $g(z) = g(x+iy)$ on a strip domain Ω = $\{z = x+iy\in \mathbb{C}|\,...
In this paper, we consider the problem of analytic continuation of the analytic function $g(z)=g(x+iy)$ on a strip domain Ω=$\{z=x+iy\in...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 404
SubjectTerms fractional landweber regularization method
ill-posed problem
inverse problem
stable analytic continuation
Title A fractional Landweber iterative regularization method for stable analytic continuation
URI https://doaj.org/article/75f1e98be17340b3a0ed4c0f0c275578
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJz2In7h-kYOepGzbpEl6XMVlEdeTi3srmXQCwlKlrv_fSVOX9SBehB5KO4QwEybvtZM3jF3VtvSqkJAASpFIpVxSanCJIvjsZe2N7ZrBzJ7UdC4fFsVio9VXqAmL8sDRcSNd-AxLA5hpIVMQNsVautSnLtcFLbeQfWkb2yBTIQdTQpbEt2KluyiFHBH-C_8eAsMpfuxBG1L93Z4y2WO7PRjk4ziJfbaFzQHbma2VVD8O2cuY-zYePiDLR-L9lPew5VENmVIVb7tu8m1_npLHltCcsCgn4AdL5DbojtBoPJSlvzZR2_uIzSf3z3fTpG-GkDihzSoBq1zhRO4NSCSOk9egHL2qBdJlCEilKMrUS9BeGwkm0155CoUzWQoliGM2aN4aPGFcOJln6ETt6E4B2AycJWpRo9IUNxyym2_3VK5XCg8NK5YVMYbgzCo4s-qdOWTXa-v3qJDxi91t8PTaJuhadw8o2lUf7eqvaJ_-xyBnbDvMKX5IOWeDVfuJFwQtVnDZraIvrxXPAQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional+Landweber+iterative+regularization+method+for+stable+analytic+continuation&rft.jtitle=AIMS+mathematics&rft.au=Fan+Yang&rft.au=Qianchao+Wang&rft.au=Xiaoxiao+Li&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=404&rft.epage=419&rft_id=info:doi/10.3934%2Fmath.2021025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_75f1e98be17340b3a0ed4c0f0c275578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon