A fractional Landweber iterative regularization method for stable analytic continuation
In this paper, we consider the problem of analytic continuation of the analytic function $g(z) = g(x+iy)$ on a strip domain Ω = $\{z = x+iy\in \mathbb{C}|\, x\in\mathbb{R}, 0 < y < y_0\}$, where the data is given only on the line $y = 0$. This problem is a severely ill-posed problem. We propos...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 1; pp. 404 - 419 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021025 |
Cover
Summary: | In this paper, we consider the problem of analytic continuation of the analytic function $g(z) = g(x+iy)$ on a strip domain Ω = $\{z = x+iy\in \mathbb{C}|\, x\in\mathbb{R}, 0 < y < y_0\}$, where the data is given only on the line $y = 0$. This problem is a severely ill-posed problem. We propose the fraction Landweber iterative regularization method to deal with this problem. Under the a priori and a posteriori regularization parameter choice rule, we all obtain the error estimates between the regularization solution and the exact solution. Some numerical examples are given to verify the efficiency and accuracy of the proposed methods. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021025 |