An improved approximate method for solving two-dimensional time-fractional-order Black-Scholes model: a finite difference approach
In this paper, we considered the two-dimensional fractional-order Black-Scholes model in the Liouville-Caputo sense. The Black-Scholes model was an important tool in the financial market, used for determining option prices in the European-style market. However, finding a closed-form analytical solut...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 7; pp. 17205 - 17233 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2024836 |
Cover
Summary: | In this paper, we considered the two-dimensional fractional-order Black-Scholes model in the Liouville-Caputo sense. The Black-Scholes model was an important tool in the financial market, used for determining option prices in the European-style market. However, finding a closed-form analytical solution for the fractional-order partial differential equation was challenging. To address this, we introduced an improved finite difference method for approximating the solution of the two-dimensional fractional-order Black-Scholes model in the Liouville-Caputo sense, based on the Crank-Nicolson finite difference method. This method combined the concepts of the finite difference method for solving the multidimensional Black-Scholes model and the finite difference method for solving the fractional-order heat equation. We analyzed the conditional stability and the order of convergence. Furthermore, numerical examples were provided to illustrate the determination of option prices. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024836 |