Bayes Vector Quantizer for Class-Imbalance Problem

The class-imbalance problem is the problem of learning a classification rule from data that are skewed in favor of one class. On these datasets traditional learning techniques tend to overlook the less numerous class, at the advantage of the majority class. However, the minority class is often the m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 21; no. 5; pp. 638 - 651
Main Authors Diamantini, C., Potena, D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2008.187

Cover

More Information
Summary:The class-imbalance problem is the problem of learning a classification rule from data that are skewed in favor of one class. On these datasets traditional learning techniques tend to overlook the less numerous class, at the advantage of the majority class. However, the minority class is often the most interesting one for the task at hand. For this reason, the class-imbalance problem has received increasing attention in the last few years. In the present paper we point the attention of the reader to a learning algorithm for the minimization of the average misclassification risk. In contrast to some popular class-imbalance learning methods, this method has its roots in statistical decision theory. A particular interesting characteristic is that when class distributions are unknown, the method can work by resorting to stochastic gradient algorithm. We study the behavior of this algorithm on imbalanced datasets, demonstrating that this principled approach allows to obtain better classification performances compared to the principal methods proposed in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2008.187