Multilevel algorithms for Rannacher–Turek finite element approximation of 3D elliptic problems

Generalizing the approach of a previous work of the authors, dealing with two-dimensional (2D) problems, we present multilevel preconditioners for three-dimensional (3D) elliptic problems discretized by a family of Rannacher Turek non-conforming finite elements. Preconditioners based on various mult...

Full description

Saved in:
Bibliographic Details
Published inComputing Vol. 82; no. 4; pp. 217 - 239
Main Authors Georgiev, I., Kraus, J., Margenov, S.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.09.2008
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0010-485X
1436-5057
DOI10.1007/s00607-008-0008-5

Cover

More Information
Summary:Generalizing the approach of a previous work of the authors, dealing with two-dimensional (2D) problems, we present multilevel preconditioners for three-dimensional (3D) elliptic problems discretized by a family of Rannacher Turek non-conforming finite elements. Preconditioners based on various multilevel extensions of two-level finite element methods (FEM) lead to iterative methods which often have an optimal order computational complexity with respect to the number of degrees of freedom of the system. Such methods were first presented by Axelsson and Vassilevski in the late-1980s, and are based on (recursive) two-level splittings of the finite element space. An important point to make is that in the case of non-conforming elements the finite element spaces corresponding to two successive levels of mesh refinement are not nested in general. To handle this, a proper two-level basis is required to enable us to fit the general framework for the construction of two-level preconditioners for conforming finite elements and to generalize the method to the multilevel case. In the present paper new estimates of the constant γ in the strengthened Cauchy–Bunyakowski–Schwarz (CBS) inequality are derived that allow an efficient multilevel extension of the related two-level preconditioners. Representative numerical tests well illustrate the optimal complexity of the resulting iterative solver, also for the case of non-smooth coefficients. The second important achievement concerns the experimental study of AMLI solvers applied to the case of micro finite element ( μ FEM) simulation. Here the coefficient jumps are resolved on the finest mesh only and therefore the classical CBS inequality based convergence theory is not directly applicable. The obtained results, however, demonstrate the efficiency of the proposed algorithms in this case also, as is illustrated by an example of microstructure analysis of bones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-008-0008-5