Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning

While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the ‘preferred’ orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 22; no. 1; pp. 113 - 123
Main Authors Liu, Yun-Tao, Fan, Hongcheng, Hu, Jason J., Zhou, Z. Hong
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-024-02505-1

Cover

More Information
Summary:While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the ‘preferred’ orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet’s ability to generate near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred-orientation problem. spIsoNet is an end-to-end self-supervised deep learning-based software to address the reconstruction and misalignment challenge in single-particle cryo-EM caused by the preferred-orientation problem. spIsoNet can also improve map isotropy and particle alignment of preferentially oriented molecules during subtomogram averaging in cryogenic electron tomography.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-024-02505-1