High stretchable and self-healing nanocellulose-poly(acrylic acid) composite hydrogels for sustainable CO2 shutoff

The injection of CO2 into oil reservoirs to enhance oil recovery (EOR) has become a widely accepted and effective technical method, which, however, remains subject to the gas channeling caused by the reservoir fractures. Herein, this work developed a novel plugging gel combining excellent mechanical...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 311; p. 120759
Main Authors Liu, Ziteng, Wei, Peng, Qi, Ying, Huang, Xueli, Xie, Yahong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2023.120759

Cover

More Information
Summary:The injection of CO2 into oil reservoirs to enhance oil recovery (EOR) has become a widely accepted and effective technical method, which, however, remains subject to the gas channeling caused by the reservoir fractures. Herein, this work developed a novel plugging gel combining excellent mechanical properties, fatigue resistance, elastic and self-healing properties for the CO2 shutoff purpose. This gel consisting of grafted nanocellulose and polymer network was synthesized via a free-radical polymerization, and reinforced by using Fe3+ to cross-link the two networks. The as-prepared PAA-TOCNF-Fe3+ gel has a stress of 1.03 MPa and a high strain of 1491 %, and self-heals to its original 98 % in stress and 96 % in strain after rupture, respectively. The introduce of TOCNF/Fe3+ improves the excellent energy dissipation and self-healing via the synergy effect of dynamical coordination bonds and hydrogen bonds. Further, the PAA-TOCNF-Fe3+ gel is both flexible and high-strength in plugging the multi-round CO2 injection, during which the CO2 breakthrough pressure is above 9.9 MPa/m, the plugging efficiency exceeds 96 %, and the self-healing rate is larger than 90 %. Given that above, this gel shows a great potential to plug the high-pressure CO2 flow, which could offer a new method for CO2-EOR and carbon storage. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0144-8617
1879-1344
1879-1344
DOI:10.1016/j.carbpol.2023.120759