A possible resolution of tension between Planck and Type Ia supernova observations

There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova (SNe Ia). Here, we show that the tension can be alleviated, if we first calibr...

Full description

Saved in:
Bibliographic Details
Published inScience China. Physics, mechanics & astronomy Vol. 57; no. 2; pp. 381 - 386
Main Authors Li, ZhengXiang, Wu, PuXun, Yu, HongWei, Zhu, ZongHong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7348
1869-1927
DOI10.1007/s11433-013-5373-1

Cover

More Information
Summary:There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova (SNe Ia). Here, we show that the tension can be alleviated, if we first calibrate, with the help of the distance-duality relation, the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters. This was used to explore their cosmological implications in the context of the spatially fiat cosmology. We find a higher value for the matter density parameter, Ωm, as compared to that from the original SNLS3, which is in agreement with Planck observations at 68.3% confidence. Therefore, the tension between Planck measurements and SNe Ia observations regarding Ωm can be effectively alleviated without invoking new physics or resorting to extensions for the standard concordance model. Moreover, with the absolute magnitude of a fiducial SNe Ia, M, determined first, we obtained a constraint on the Hubble constant with SNLS3 alone, which is also consistent with Planck.
Bibliography:11-5000/N
X-rays: galaxies: clusters -(cosmology:) distance scale - cosmology: miscellaneous
There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova (SNe Ia). Here, we show that the tension can be alleviated, if we first calibrate, with the help of the distance-duality relation, the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters. This was used to explore their cosmological implications in the context of the spatially fiat cosmology. We find a higher value for the matter density parameter, Ωm, as compared to that from the original SNLS3, which is in agreement with Planck observations at 68.3% confidence. Therefore, the tension between Planck measurements and SNe Ia observations regarding Ωm can be effectively alleviated without invoking new physics or resorting to extensions for the standard concordance model. Moreover, with the absolute magnitude of a fiducial SNe Ia, M, determined first, we obtained a constraint on the Hubble constant with SNLS3 alone, which is also consistent with Planck.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-013-5373-1