Hybrid artificial fish particle swarm optimizer and kernel extreme learning machine for type-II diabetes predictive model
The World Health Organization ( WHO) estimated that in 2016, 1.6 million deaths caused were due to diabetes. Precise and on-time diagnosis of type-II diabetes is crucial to reduce the risk of various diseases such as heart disease, stroke, kidney disease, diabetic retinopathy, diabetic neuropathy, a...
        Saved in:
      
    
          | Published in | Medical & biological engineering & computing Vol. 59; no. 4; pp. 841 - 867 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.04.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0140-0118 1741-0444 1741-0444  | 
| DOI | 10.1007/s11517-021-02333-x | 
Cover
| Summary: | The World Health Organization
(
WHO) estimated that in 2016, 1.6 million deaths caused were due to diabetes. Precise and on-time diagnosis of type-II diabetes is crucial to reduce the risk of various diseases such as heart disease, stroke, kidney disease, diabetic retinopathy, diabetic neuropathy, and macrovascular problems. The non-invasive methods like machine learning are reliable and efficient in classifying the people subjected to type-II diabetics risk and healthy people into two different categories. This present study aims to develop a stacking-based integrated kernel extreme learning machine (KELM) model for identifying the risk of type-II diabetic patients based on the follow-up time on the diabetes research center dataset. The Pima Indian Diabetic Dataset (PIDD) and a Diabetic Research Center dataset are used in this study. A min-max normalization is used to preprocess the noisy datasets. The Hybrid Particle Swarm Optimization-Artificial Fish Swarm Optimization (HAFPSO) algorithm used satisfies the multi-objective problem by increasing the Classification Accuracy (CA) and decreasing the kernel complexity of the optimal learners (NBC) selected. At last, the model is integrated by utilizing the KELM as a meta-classifier which combines the predictions of the twenty Base Learners as a whole. The proposed classification method helps the clinicians to predict the patients who are at a high risk of type-II diabetes in the future with the highest accuracy of 98.5%. The proposed method is tested with different measures such as accuracy, sensitivity, specificity, Mathews Correlation Coefficient, and Kappa Statistics are calculated. The results obtained show that the KELM-HAFPSO approach is a promising new tool for identifying type-II diabetes.
Graphical abstract | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 0140-0118 1741-0444 1741-0444  | 
| DOI: | 10.1007/s11517-021-02333-x |