Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay
De novo variants adjacent to the canonical splicing sites or in the well-defined splicing-related regions are more likely to impair splicing but remain under-investigated in autism spectrum disorder (ASD). By analyzing large, recent ASD genome sequencing cohorts, we find a significant burden of de n...
Saved in:
Published in | Molecular psychiatry Vol. 30; no. 5; pp. 1952 - 1965 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4184 1476-5578 1476-5578 |
DOI | 10.1038/s41380-024-02806-z |
Cover
Summary: | De novo variants adjacent to the canonical splicing sites or in the well-defined splicing-related regions are more likely to impair splicing but remain under-investigated in autism spectrum disorder (ASD). By analyzing large, recent ASD genome sequencing cohorts, we find a significant burden of de novo potential splicing-disrupting variants (PSDVs) in 5048 probands compared to 4090 unaffected siblings. We identified 55 genes with recurrent de novo PSDVs that were highly intolerant to variation. Forty-six of these genes have not been strongly implicated in ASD or other neurodevelopmental disorders previously, including
GSK3B
. Through international, multicenter collaborations, we assembled genotype and phenotype data for 15 individuals with
GSK3B
variants and identified common phenotypes including developmental delay, ASD, sleeping disturbance, and aggressive behavior. Using available single-cell transcriptomic data, we show that
GSK3B
is enriched in dorsal progenitors and intermediate forms of excitatory neurons in the developing brain. We showed that
Gsk3b
knockdown in mouse excitatory neurons interferes with dendrite arborization and spine maturation which could not be rescued by de novo missense variants identified from affected individuals. In summary, our findings suggest that PSDVs may play an important role in the genetic etiology of ASD and allow for the prioritization of new ASD candidate genes. Importantly, we show that genetic variation resulting in
GSK3B
loss-of-function can lead to a neurodevelopmental disorder with core features of ASD and developmental delay. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1359-4184 1476-5578 1476-5578 |
DOI: | 10.1038/s41380-024-02806-z |