Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood...
Saved in:
Published in | Hydrology Vol. 12; no. 8; p. 196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2306-5338 2306-5338 |
DOI | 10.3390/hydrology12080196 |
Cover
Abstract | Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems. |
---|---|
AbstractList | Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km[sup.2] catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems. Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems. |
Audience | Academic |
Author | Adiyasa, Alexander Mantegna, Andrea Niccolò Kveladze, Irma |
Author_xml | – sequence: 1 givenname: Alexander surname: Adiyasa fullname: Adiyasa, Alexander – sequence: 2 givenname: Andrea Niccolò surname: Mantegna fullname: Mantegna, Andrea Niccolò – sequence: 3 givenname: Irma orcidid: 0000-0003-4106-1195 surname: Kveladze fullname: Kveladze, Irma |
BookMark | eNplUV1r3DAQNCWFpkl-QN8EfXaiD0uW-uYeTXKQUkiaZ7GSpasuPsuV7IT791FyoQTKPuwyzAy7O5-rozGOrqq-EHzOmMIXf_Z9ikPc7AnFEhMlPlTHlGFRc8bk0bv5U3WW8xZjTAmRDcbH1dQtc9zBHMYNulrf1d8hux6thrj0Zkl5RrchP6CfME0vjPv8ynOjS0Xy6FC3_oY6dJlg555iekA-JnRnYQAzOHT9tlYoAOpGGPY55NPqo4chu7O3flLdX_74vbqub35drVfdTW1Zy-ea85ZQwxohKRjcgsJUWQaCgVG8dRiUMISWUw1lvuGeSMWgB2K9oKb1ip1U64NvH2GrpxR2kPY6QtCvQEwbDWkOdnCaE9sa3ishnWskoZIp4Qn0tvzIUc6L19eD15Ti38XlWW_jkspBWTPaNJgpImlhnR9YGyimYfRxTmBL9W4XbEnMh4J3kjOhsKKsCMhBYFPMOTn_b02C9Uuw-r9g2TPXx5h- |
Cites_doi | 10.14358/PERS.70.3.331 10.1029/TR038i006p00913 10.1201/9780203357132 10.1016/j.cageo.2008.09.001 10.1080/17538947.2023.2278895 10.1145/3589132.3625625 10.1002/9781119951001 10.1002/2017GL072874 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 10.1016/j.aqpro.2015.02.126 10.1029/96WR03137 10.1029/2008EO100001 10.3390/hydrology11090148 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H98 HCIFZ L.G M0K PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/hydrology12080196 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agriculture Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2306-5338 |
ExternalDocumentID | oai_doaj_org_article_51c7b5d968ee48128396f1adc184e255 A853690923 10_3390_hydrology12080196 |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GroupedDBID | 5VS 7X2 8CJ 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION D1J EDH GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 M0K MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC PUEGO 3V. 8FK ABUWG AZQEC DWQXO F1W H98 L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c375t-55712b34682ab07a9029c3a63ab957e0a96b12196b23f45f1893ada1cf62b7f93 |
IEDL.DBID | BENPR |
ISSN | 2306-5338 |
IngestDate | Mon Sep 01 19:40:19 EDT 2025 Thu Aug 28 04:03:00 EDT 2025 Tue Sep 02 03:59:47 EDT 2025 Wed Oct 01 05:43:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-55712b34682ab07a9029c3a63ab957e0a96b12196b23f45f1893ada1cf62b7f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4106-1195 |
OpenAccessLink | https://www.proquest.com/docview/3244039182?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3244039182 |
PQPubID | 2055406 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_51c7b5d968ee48128396f1adc184e255 proquest_journals_3244039182 gale_infotracacademiconefile_A853690923 crossref_primary_10_3390_hydrology12080196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Hydrology |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hou (ref_21) 2025; 138 Lehner (ref_10) 2008; 89 ref_13 ref_12 Hodgson (ref_26) 2004; 70 Devia (ref_8) 2015; 4 ref_19 ref_18 ref_17 Bater (ref_27) 2009; 35 ref_25 Strahler (ref_14) 1957; 38 ref_24 Tarboton (ref_9) 1997; 33 ref_23 ref_22 ref_20 ref_1 ref_3 ref_2 Horton (ref_11) 1945; 56 Zhang (ref_16) 2025; 136 Yamazaki (ref_15) 2017; 44 ref_5 ref_4 ref_7 ref_6 |
References_xml | – volume: 70 start-page: 331 year: 2004 ident: ref_26 article-title: Accuracy of Airborne LIDAR-Derived Elevation: Empirical Assessment and Error Budget publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.3.331 – ident: ref_5 – volume: 136 start-page: 104312 year: 2025 ident: ref_16 article-title: Geospatial large language model trained with a simulated environment for generating tool-use chains autonomously publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_24 – volume: 38 start-page: 913 year: 1957 ident: ref_14 article-title: Quantitative analysis of watershed geomorphology publication-title: Trans. Am. Geophys. Union doi: 10.1029/TR038i006p00913 – ident: ref_12 doi: 10.1201/9780203357132 – volume: 138 start-page: 104456 year: 2025 ident: ref_21 article-title: GeoCode-GPT: A large language model for geospatial code generation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 289 year: 2009 ident: ref_27 article-title: Evaluating error associated with lidar-derived DEM interpolation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.09.001 – ident: ref_1 – ident: ref_18 – ident: ref_23 – ident: ref_7 doi: 10.1080/17538947.2023.2278895 – ident: ref_25 – ident: ref_4 – ident: ref_6 doi: 10.1145/3589132.3625625 – ident: ref_2 – ident: ref_3 doi: 10.1002/9781119951001 – volume: 44 start-page: 5844 year: 2017 ident: ref_15 article-title: A High-Accuracy Map of Global Terrain Elevations publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072874 – ident: ref_13 – volume: 56 start-page: 275 year: 1945 ident: ref_11 article-title: Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 – ident: ref_17 – ident: ref_19 – ident: ref_22 – volume: 4 start-page: 1001 year: 2015 ident: ref_8 article-title: A Review on Hydrological Models publication-title: Aquat. Procedia doi: 10.1016/j.aqpro.2015.02.126 – volume: 33 start-page: 309 year: 1997 ident: ref_9 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resour. Res. doi: 10.1029/96WR03137 – volume: 89 start-page: 93 year: 2008 ident: ref_10 article-title: New Global Hydrography Derived From Spaceborne Elevation Data publication-title: Eos Trans. Am. Geophys. Union doi: 10.1029/2008EO100001 – ident: ref_20 doi: 10.3390/hydrology11090148 |
SSID | ssj0002118400 |
Score | 2.3032463 |
Snippet | Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 196 |
SubjectTerms | Automation Classification cloudburst Cloudbursts code generation Cognition & reasoning Decision making Decision support systems Denmark Drainage Efficiency Embedding Environmental aspects Environmental risk Floods Flow paths Flow velocity Generative artificial intelligence Geographic information systems Geographical information systems GIS automation Hydrologic models Hydrological analysis hydrological modeling Hydrology Land use Land use management Land use planning large language models Libraries Machine learning Methods Natural language Planning Precipitation (Meteorology) Python Risk assessment Rivers Software Software development Subject specialists Topography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei17EJ9YXexAEITTJPpJ4S8VaBT1YC70t-0orSitteui_dyZJRRHx4jUsZDPf7sw32dlvCDmXMuTecB1kiWUB96EL0oL7wIXSMCDwRazxvvPDo-wN-P1QDL-0-sKasFoeuDZcW0Q2McJlMvWeQzSCgC6LSDsLqYkHPozeF8LYl2QKfTCkNZC5NMeYDPL69njpZtWP6giGoyjMt0BU6fX_5pWrUNPdJlsNR6R5PbcdsuYnu2SjaVc-Xu6R93xRTpFqTkb09q4fdCAUOXr9Nl3gufi8pE8v81f6oFF7YUSrqgBa60ujc6P53RXNaXdVlkWBt9I-YIW3qGiv-QIEj64kS_bJoHvzfN0LmtYJgWWJKAMhkig2jMs01iZMdBbGmWVaMm0ykfhQZ9JE4KykiVnBRREBbdFOR7aQsUmKjB2Q9cl04g8JdZYzW3hnvA955ETqJfNGG-PgFYk3LXK5sqN6rxUyFGQWaHT1w-gt0kFLfw5EcevqAUCuGsjVX5C3yAXipHALljNtdXOTAOaLYlYqBwoCST9Q1xY5WUGpmr05V0AhOerip_HRf8zmmGzG2BO4Kgo8IevlbOFPgaiU5qxakx9c6ebK priority: 102 providerName: Directory of Open Access Journals |
Title | Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis |
URI | https://www.proquest.com/docview/3244039182 https://doaj.org/article/51c7b5d968ee48128396f1adc184e255 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_q9UFfip94Wss-CIKwNNmvJIJIrvS8Cj2ktdC3sF-5inK53uUe-t87s7epguhrEkgyszvzm52Z3xDyVutMBisNqwonmAyZZ2UrA_OZtgIAfMsN9jufz_XsSn65Vtd7ZD70wmBZ5WATo6H2ncMz8mNw_BLZzEv-aXXLcGoUZleHERomjVbwHyPF2AOyz3Gq8ojsT07nXy_uT10g3IGIJqU3BcT7xzd3fh0PsHMO4ClH8v4_HFTk8f-XtY4uaPqYHCTsSOudsp-QvbB8Sh6mMeY3d8_Iqt72HULQ5YJ-PrtkE3BRnp787LaYL9_09OL75gc9N8jJsKCxWoDueKfR6NH67AOt6XQo16KAZ-kl6BC7q-gs_QEqlQ5UJs_J1fT028mMpZEKzIlC9UypIudWSF1yY7PCVBmvnDBaGFupImSm0jYHI6YtF61UbQ5wxniTu1ZzW7SVeEFGy24ZXhLqnRSuDd6GkMncqzJoEayx1sMrimDH5P0gx2a1Y85oIOJAoTd_CX1MJijp-weR9Dpe6NaLJu2hRuWusMpXugxBAjABbKfb3HgHOg0QGo3JO9RTg1uzXxtnUocBfC-SXDU1QBNdZQBpx-RwUGWT9uym-b3CXv3_9mvyiOMU4FgGeEhG_Xob3gA06e1RWm9HMbT_BYPO5k8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEE-RUmAPICQkq_buem0jVcgpDQltItSH1NuyL6cIFIfEEcqf47cx46wLEoJbr7Yl2zOzM9_sznxDyEspY-GN0FGRWR4JH7sor4SPXCwNBwBfMY39zuOJHF6Kj1fp1Rb52fXCYFll5xNbR-1qi3vkBxD4BbKZ5-zd_HuEU6PwdLUboaHDaAV32FKMhcaOE7_-ASnc8nD0HvT9irHB8cXRMApTBiLLs7SJ0jRLmOFC5kybONNFzArLteTaFGnmY11Ik8C6lobxSqRVAhFeO53YSjKTVUjGBCFgB2AHh1W10z-efDq72eWB9AoyqHCcynkRH1yv3aLdME8YgLUEhwX8ERDbuQH_ig5tyBvcI3cDVqXlxrjuky0_e0B2w9j06_VDMi9XTY2QdzalH0bnUR9CoqNH3-oVns8vG3r2ZfmVjjVyQExpW51ANzzX6GRpOXpLSzroysMo4Gd6DjaD3Vx0GP4AjYh21CmPyOWtCPcx2Z7VM_-EUGcFt5V3xvtYJC7NveTeaGMcvCLzpkfedHJU8w1Th4IMB4Wu_hJ6j_RR0jcPIsl2e6FeTFVYsypNbGZSV8jcewFACLCkrBLtLOjUQyrWI69RTwpdQbPQVoeOBvheJNVSJUAhWcQAoXtkv1OlCj5iqX5b9N7_b78gu8OL8ak6HU1OnpI7DCcQtyWI-2S7Waz8M4BFjXkebI-Sz7dt7r8A0NMg8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEJ-ibIAfQEhIURPbcRKkCaXbSstYNW1M2pvnr3SIqS1tKtR_kb-Ku9QZSAje9ppESnJ3vvudffc7Ql5LGQtvhI6KzPJI-NhFeSV85GJpOAD4imnsdz4ey-G5-HSRXmyRn20vDJZVtj6xcdRuZnGPvAeBXyCbec56VSiLODkYfJh_j3CCFJ60tuM0dBiz4PYaurHQ5HHk1z8gnVvujQ5A928YGxx-2R9GYeJAZHmW1lGaZgkzXMicaRNnuohZYbmWXJsizXysC2kSWOPSMF6JtEog2munE1tJZrIKiZkgHGxn2C_aIdv9w_HJ6c2OD6RakE2Fo1XOi7h3tXaLZvM8YQDcEhwc8EdwbGYI_CtSNOFv8IDcD7iVlhtDe0i2_PQRuRtGqF-tH5N5uapnCH-nE_pxdBb1ITw6un89W-FZ_bKmp1-X3-ixRj6ICW0qFeiG8xodLi1H72lJB22pGAUsTc_AfrCziw7DH6BB0ZZG5Qk5vxXhPiWd6WzqnxHqrOC28s54H4vEpbmX3BttjINXZN50ybtWjmq-Ye1QkO2g0NVfQu-SPkr65kEk3G4uzBYTFdavShObmdQVMvdeACgCXCmrRDsLOvWQlnXJW9STQrdQL7TVobsBvhcJtlQJsEgWMcDpLtltVamCv1iq39b9_P-3X5E7YPbq82h8tEPuMRxG3FQj7pJOvVj5F4CQavMymB4ll7dt7b8AHbklLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+GIS-Based+Cloudburst+Risk+Mapping+Using+Generative+AI%3A+A+Framework+for+Scalable+Hydrological+Analysis&rft.jtitle=Hydrology&rft.au=Adiyasa%2C+Alexander&rft.au=Mantegna%2C+Andrea+Niccol%C3%B2&rft.au=Kveladze%2C+Irma&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2306-5338&rft.eissn=2306-5338&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fhydrology12080196&rft.externalDocID=A853690923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5338&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5338&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5338&client=summon |