Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis

Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood...

Full description

Saved in:
Bibliographic Details
Published inHydrology Vol. 12; no. 8; p. 196
Main Authors Adiyasa, Alexander, Mantegna, Andrea Niccolò, Kveladze, Irma
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2306-5338
2306-5338
DOI10.3390/hydrology12080196

Cover

Abstract Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems.
AbstractList Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km[sup.2] catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems.
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems.
Audience Academic
Author Adiyasa, Alexander
Mantegna, Andrea Niccolò
Kveladze, Irma
Author_xml – sequence: 1
  givenname: Alexander
  surname: Adiyasa
  fullname: Adiyasa, Alexander
– sequence: 2
  givenname: Andrea Niccolò
  surname: Mantegna
  fullname: Mantegna, Andrea Niccolò
– sequence: 3
  givenname: Irma
  orcidid: 0000-0003-4106-1195
  surname: Kveladze
  fullname: Kveladze, Irma
BookMark eNplUV1r3DAQNCWFpkl-QN8EfXaiD0uW-uYeTXKQUkiaZ7GSpasuPsuV7IT791FyoQTKPuwyzAy7O5-rozGOrqq-EHzOmMIXf_Z9ikPc7AnFEhMlPlTHlGFRc8bk0bv5U3WW8xZjTAmRDcbH1dQtc9zBHMYNulrf1d8hux6thrj0Zkl5RrchP6CfME0vjPv8ynOjS0Xy6FC3_oY6dJlg555iekA-JnRnYQAzOHT9tlYoAOpGGPY55NPqo4chu7O3flLdX_74vbqub35drVfdTW1Zy-ea85ZQwxohKRjcgsJUWQaCgVG8dRiUMISWUw1lvuGeSMWgB2K9oKb1ip1U64NvH2GrpxR2kPY6QtCvQEwbDWkOdnCaE9sa3ishnWskoZIp4Qn0tvzIUc6L19eD15Ti38XlWW_jkspBWTPaNJgpImlhnR9YGyimYfRxTmBL9W4XbEnMh4J3kjOhsKKsCMhBYFPMOTn_b02C9Uuw-r9g2TPXx5h-
Cites_doi 10.14358/PERS.70.3.331
10.1029/TR038i006p00913
10.1201/9780203357132
10.1016/j.cageo.2008.09.001
10.1080/17538947.2023.2278895
10.1145/3589132.3625625
10.1002/9781119951001
10.1002/2017GL072874
10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
10.1016/j.aqpro.2015.02.126
10.1029/96WR03137
10.1029/2008EO100001
10.3390/hydrology11090148
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H98
HCIFZ
L.G
M0K
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/hydrology12080196
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2306-5338
ExternalDocumentID oai_doaj_org_article_51c7b5d968ee48128396f1adc184e255
A853690923
10_3390_hydrology12080196
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GroupedDBID 5VS
7X2
8CJ
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
EDH
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
M0K
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
3V.
8FK
ABUWG
AZQEC
DWQXO
F1W
H98
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c375t-55712b34682ab07a9029c3a63ab957e0a96b12196b23f45f1893ada1cf62b7f93
IEDL.DBID BENPR
ISSN 2306-5338
IngestDate Mon Sep 01 19:40:19 EDT 2025
Thu Aug 28 04:03:00 EDT 2025
Tue Sep 02 03:59:47 EDT 2025
Wed Oct 01 05:43:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-55712b34682ab07a9029c3a63ab957e0a96b12196b23f45f1893ada1cf62b7f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4106-1195
OpenAccessLink https://www.proquest.com/docview/3244039182?pq-origsite=%requestingapplication%&accountid=15518
PQID 3244039182
PQPubID 2055406
ParticipantIDs doaj_primary_oai_doaj_org_article_51c7b5d968ee48128396f1adc184e255
proquest_journals_3244039182
gale_infotracacademiconefile_A853690923
crossref_primary_10_3390_hydrology12080196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Hydrology
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hou (ref_21) 2025; 138
Lehner (ref_10) 2008; 89
ref_13
ref_12
Hodgson (ref_26) 2004; 70
Devia (ref_8) 2015; 4
ref_19
ref_18
ref_17
Bater (ref_27) 2009; 35
ref_25
Strahler (ref_14) 1957; 38
ref_24
Tarboton (ref_9) 1997; 33
ref_23
ref_22
ref_20
ref_1
ref_3
ref_2
Horton (ref_11) 1945; 56
Zhang (ref_16) 2025; 136
Yamazaki (ref_15) 2017; 44
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 70
  start-page: 331
  year: 2004
  ident: ref_26
  article-title: Accuracy of Airborne LIDAR-Derived Elevation: Empirical Assessment and Error Budget
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.3.331
– ident: ref_5
– volume: 136
  start-page: 104312
  year: 2025
  ident: ref_16
  article-title: Geospatial large language model trained with a simulated environment for generating tool-use chains autonomously
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_24
– volume: 38
  start-page: 913
  year: 1957
  ident: ref_14
  article-title: Quantitative analysis of watershed geomorphology
  publication-title: Trans. Am. Geophys. Union
  doi: 10.1029/TR038i006p00913
– ident: ref_12
  doi: 10.1201/9780203357132
– volume: 138
  start-page: 104456
  year: 2025
  ident: ref_21
  article-title: GeoCode-GPT: A large language model for geospatial code generation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 289
  year: 2009
  ident: ref_27
  article-title: Evaluating error associated with lidar-derived DEM interpolation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.09.001
– ident: ref_1
– ident: ref_18
– ident: ref_23
– ident: ref_7
  doi: 10.1080/17538947.2023.2278895
– ident: ref_25
– ident: ref_4
– ident: ref_6
  doi: 10.1145/3589132.3625625
– ident: ref_2
– ident: ref_3
  doi: 10.1002/9781119951001
– volume: 44
  start-page: 5844
  year: 2017
  ident: ref_15
  article-title: A High-Accuracy Map of Global Terrain Elevations
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072874
– ident: ref_13
– volume: 56
  start-page: 275
  year: 1945
  ident: ref_11
  article-title: Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
– ident: ref_17
– ident: ref_19
– ident: ref_22
– volume: 4
  start-page: 1001
  year: 2015
  ident: ref_8
  article-title: A Review on Hydrological Models
  publication-title: Aquat. Procedia
  doi: 10.1016/j.aqpro.2015.02.126
– volume: 33
  start-page: 309
  year: 1997
  ident: ref_9
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR03137
– volume: 89
  start-page: 93
  year: 2008
  ident: ref_10
  article-title: New Global Hydrography Derived From Spaceborne Elevation Data
  publication-title: Eos Trans. Am. Geophys. Union
  doi: 10.1029/2008EO100001
– ident: ref_20
  doi: 10.3390/hydrology11090148
SSID ssj0002118400
Score 2.3032463
Snippet Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 196
SubjectTerms Automation
Classification
cloudburst
Cloudbursts
code generation
Cognition & reasoning
Decision making
Decision support systems
Denmark
Drainage
Efficiency
Embedding
Environmental aspects
Environmental risk
Floods
Flow paths
Flow velocity
Generative artificial intelligence
Geographic information systems
Geographical information systems
GIS automation
Hydrologic models
Hydrological analysis
hydrological modeling
Hydrology
Land use
Land use management
Land use planning
large language models
Libraries
Machine learning
Methods
Natural language
Planning
Precipitation (Meteorology)
Python
Risk assessment
Rivers
Software
Software development
Subject specialists
Topography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei17EJ9YXexAEITTJPpJ4S8VaBT1YC70t-0orSitteui_dyZJRRHx4jUsZDPf7sw32dlvCDmXMuTecB1kiWUB96EL0oL7wIXSMCDwRazxvvPDo-wN-P1QDL-0-sKasFoeuDZcW0Q2McJlMvWeQzSCgC6LSDsLqYkHPozeF8LYl2QKfTCkNZC5NMeYDPL69njpZtWP6giGoyjMt0BU6fX_5pWrUNPdJlsNR6R5PbcdsuYnu2SjaVc-Xu6R93xRTpFqTkb09q4fdCAUOXr9Nl3gufi8pE8v81f6oFF7YUSrqgBa60ujc6P53RXNaXdVlkWBt9I-YIW3qGiv-QIEj64kS_bJoHvzfN0LmtYJgWWJKAMhkig2jMs01iZMdBbGmWVaMm0ykfhQZ9JE4KykiVnBRREBbdFOR7aQsUmKjB2Q9cl04g8JdZYzW3hnvA955ETqJfNGG-PgFYk3LXK5sqN6rxUyFGQWaHT1w-gt0kFLfw5EcevqAUCuGsjVX5C3yAXipHALljNtdXOTAOaLYlYqBwoCST9Q1xY5WUGpmr05V0AhOerip_HRf8zmmGzG2BO4Kgo8IevlbOFPgaiU5qxakx9c6ebK
  priority: 102
  providerName: Directory of Open Access Journals
Title Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis
URI https://www.proquest.com/docview/3244039182
https://doaj.org/article/51c7b5d968ee48128396f1adc184e255
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_q9UFfip94Wss-CIKwNNmvJIJIrvS8Cj2ktdC3sF-5inK53uUe-t87s7epguhrEkgyszvzm52Z3xDyVutMBisNqwonmAyZZ2UrA_OZtgIAfMsN9jufz_XsSn65Vtd7ZD70wmBZ5WATo6H2ncMz8mNw_BLZzEv-aXXLcGoUZleHERomjVbwHyPF2AOyz3Gq8ojsT07nXy_uT10g3IGIJqU3BcT7xzd3fh0PsHMO4ClH8v4_HFTk8f-XtY4uaPqYHCTsSOudsp-QvbB8Sh6mMeY3d8_Iqt72HULQ5YJ-PrtkE3BRnp787LaYL9_09OL75gc9N8jJsKCxWoDueKfR6NH67AOt6XQo16KAZ-kl6BC7q-gs_QEqlQ5UJs_J1fT028mMpZEKzIlC9UypIudWSF1yY7PCVBmvnDBaGFupImSm0jYHI6YtF61UbQ5wxniTu1ZzW7SVeEFGy24ZXhLqnRSuDd6GkMncqzJoEayx1sMrimDH5P0gx2a1Y85oIOJAoTd_CX1MJijp-weR9Dpe6NaLJu2hRuWusMpXugxBAjABbKfb3HgHOg0QGo3JO9RTg1uzXxtnUocBfC-SXDU1QBNdZQBpx-RwUGWT9uym-b3CXv3_9mvyiOMU4FgGeEhG_Xob3gA06e1RWm9HMbT_BYPO5k8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEE-RUmAPICQkq_buem0jVcgpDQltItSH1NuyL6cIFIfEEcqf47cx46wLEoJbr7Yl2zOzM9_sznxDyEspY-GN0FGRWR4JH7sor4SPXCwNBwBfMY39zuOJHF6Kj1fp1Rb52fXCYFll5xNbR-1qi3vkBxD4BbKZ5-zd_HuEU6PwdLUboaHDaAV32FKMhcaOE7_-ASnc8nD0HvT9irHB8cXRMApTBiLLs7SJ0jRLmOFC5kybONNFzArLteTaFGnmY11Ik8C6lobxSqRVAhFeO53YSjKTVUjGBCFgB2AHh1W10z-efDq72eWB9AoyqHCcynkRH1yv3aLdME8YgLUEhwX8ERDbuQH_ig5tyBvcI3cDVqXlxrjuky0_e0B2w9j06_VDMi9XTY2QdzalH0bnUR9CoqNH3-oVns8vG3r2ZfmVjjVyQExpW51ANzzX6GRpOXpLSzroysMo4Gd6DjaD3Vx0GP4AjYh21CmPyOWtCPcx2Z7VM_-EUGcFt5V3xvtYJC7NveTeaGMcvCLzpkfedHJU8w1Th4IMB4Wu_hJ6j_RR0jcPIsl2e6FeTFVYsypNbGZSV8jcewFACLCkrBLtLOjUQyrWI69RTwpdQbPQVoeOBvheJNVSJUAhWcQAoXtkv1OlCj5iqX5b9N7_b78gu8OL8ak6HU1OnpI7DCcQtyWI-2S7Waz8M4BFjXkebI-Sz7dt7r8A0NMg8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEJ-ibIAfQEhIURPbcRKkCaXbSstYNW1M2pvnr3SIqS1tKtR_kb-Ku9QZSAje9ppESnJ3vvudffc7Ql5LGQtvhI6KzPJI-NhFeSV85GJpOAD4imnsdz4ey-G5-HSRXmyRn20vDJZVtj6xcdRuZnGPvAeBXyCbec56VSiLODkYfJh_j3CCFJ60tuM0dBiz4PYaurHQ5HHk1z8gnVvujQ5A928YGxx-2R9GYeJAZHmW1lGaZgkzXMicaRNnuohZYbmWXJsizXysC2kSWOPSMF6JtEog2munE1tJZrIKiZkgHGxn2C_aIdv9w_HJ6c2OD6RakE2Fo1XOi7h3tXaLZvM8YQDcEhwc8EdwbGYI_CtSNOFv8IDcD7iVlhtDe0i2_PQRuRtGqF-tH5N5uapnCH-nE_pxdBb1ITw6un89W-FZ_bKmp1-X3-ixRj6ICW0qFeiG8xodLi1H72lJB22pGAUsTc_AfrCziw7DH6BB0ZZG5Qk5vxXhPiWd6WzqnxHqrOC28s54H4vEpbmX3BttjINXZN50ybtWjmq-Ye1QkO2g0NVfQu-SPkr65kEk3G4uzBYTFdavShObmdQVMvdeACgCXCmrRDsLOvWQlnXJW9STQrdQL7TVobsBvhcJtlQJsEgWMcDpLtltVamCv1iq39b9_P-3X5E7YPbq82h8tEPuMRxG3FQj7pJOvVj5F4CQavMymB4ll7dt7b8AHbklLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+GIS-Based+Cloudburst+Risk+Mapping+Using+Generative+AI%3A+A+Framework+for+Scalable+Hydrological+Analysis&rft.jtitle=Hydrology&rft.au=Adiyasa%2C+Alexander&rft.au=Mantegna%2C+Andrea+Niccol%C3%B2&rft.au=Kveladze%2C+Irma&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2306-5338&rft.eissn=2306-5338&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fhydrology12080196&rft.externalDocID=A853690923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5338&client=summon