Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood...
Saved in:
Published in | Hydrology Vol. 12; no. 8; p. 196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2306-5338 2306-5338 |
DOI | 10.3390/hydrology12080196 |
Cover
Summary: | Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2306-5338 2306-5338 |
DOI: | 10.3390/hydrology12080196 |