Contour-aware multi-label chest X-ray organ segmentation

Purpose Segmentation of organs from chest X-ray images is an essential task for an accurate and reliable diagnosis of lung diseases and chest organ morphometry. In this study, we investigated the benefits of augmenting state-of-the-art deep convolutional neural networks (CNNs) for image segmentation...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 15; no. 3; pp. 425 - 436
Main Authors Kholiavchenko, M., Sirazitdinov, I., Kubrak, K., Badrutdinova, R., Kuleev, R., Yuan, Y., Vrtovec, T., Ibragimov, B.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-019-02115-9

Cover

More Information
Summary:Purpose Segmentation of organs from chest X-ray images is an essential task for an accurate and reliable diagnosis of lung diseases and chest organ morphometry. In this study, we investigated the benefits of augmenting state-of-the-art deep convolutional neural networks (CNNs) for image segmentation with organ contour information and evaluated the performance of such augmentation on segmentation of lung fields, heart, and clavicles from chest X-ray images. Methods Three state-of-the-art CNNs were augmented, namely the UNet and LinkNet architecture with the ResNeXt feature extraction backbone, and the Tiramisu architecture with the DenseNet. All CNN architectures were trained on ground-truth segmentation masks and additionally on the corresponding contours. The contribution of such contour-based augmentation was evaluated against the contour-free architectures, and 20 existing algorithms for lung field segmentation. Results The proposed contour-aware segmentation improved the segmentation performance, and when compared against existing algorithms on the same publicly available database of 247 chest X-ray images, the UNet architecture with the ResNeXt50 encoder combined with the contour-aware approach resulted in the best overall segmentation performance, achieving a Jaccard overlap coefficient of 0.971, 0.933, and 0.903 for the lung fields, heart, and clavicles, respectively. Conclusion In this study, we proposed to augment CNN architectures for CXR segmentation with organ contour information and were able to significantly improve segmentation accuracy and outperform all existing solution using a public chest X-ray database.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1861-6410
1861-6429
1861-6429
DOI:10.1007/s11548-019-02115-9