Artificial intelligence–based full aortic CT angiography imaging with ultra-low-dose contrast medium: a preliminary study
Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scan...
Saved in:
| Published in | European radiology Vol. 33; no. 1; pp. 678 - 689 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-1084 0938-7994 1432-1084 |
| DOI | 10.1007/s00330-022-08975-1 |
Cover
| Abstract | Objectives
To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.
Methods
We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (
n
= 100) and the validation datasets (
n
= 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.
Results
The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all
p
< 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all
p
< 0.05). Similar results were also seen in obese patients (BMI > 25, all
p
< 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all
K
-values > 0.80,
p
< 0.05).
Conclusions
The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.
Key Points
• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm.
• Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images.
• No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses. |
|---|---|
| AbstractList | To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.OBJECTIVESTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.METHODSWe prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).RESULTSThe mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.CONCLUSIONSThe required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.KEY POINTS• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses. Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets ( n = 100) and the validation datasets ( n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. Results The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K -values > 0.80, p < 0.05). Conclusions The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. Key Points • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses. To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05). The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses. ObjectivesTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.MethodsWe prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.ResultsThe mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).ConclusionsThe required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.Key Points• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm.• Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images.• No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses. |
| Author | Zhang, Heye Zhou, Zhen Firmin, David Yang, Guang Wang, Hui Zhang, Nan Du, Zhiqiang Xu, Lei Zhang, Weiwei Gao, Yifeng Bo, Kairui Wang, Rui |
| Author_xml | – sequence: 1 givenname: Zhen surname: Zhou fullname: Zhou, Zhen organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 2 givenname: Yifeng surname: Gao fullname: Gao, Yifeng organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 3 givenname: Weiwei surname: Zhang fullname: Zhang, Weiwei organization: School of Biomedical Engineering, Sun Yat-Sen University – sequence: 4 givenname: Kairui surname: Bo fullname: Bo, Kairui organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 5 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 6 givenname: Hui surname: Wang fullname: Wang, Hui organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 7 givenname: Rui surname: Wang fullname: Wang, Rui organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 8 givenname: Zhiqiang surname: Du fullname: Du, Zhiqiang organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University – sequence: 9 givenname: David surname: Firmin fullname: Firmin, David organization: Cardiovascular Research Centre, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London – sequence: 10 givenname: Guang surname: Yang fullname: Yang, Guang organization: Cardiovascular Research Centre, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London – sequence: 11 givenname: Heye surname: Zhang fullname: Zhang, Heye organization: School of Biomedical Engineering, Sun Yat-Sen University – sequence: 12 givenname: Lei orcidid: 0000-0002-8499-0448 surname: Xu fullname: Xu, Lei email: leixu2001@hotmail.com organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35788754$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kbtqHTEQhkWwiS_JC6QIgjRpFEva1UqbzhxyA4MbuxZaXdYyWulE0mIOafIOecM8SRQfmwQXrmYGvn-Y-f8TcBBTtAC8IfgDwZifFYy7DiNMKcJi5AyRF-CY9B1FBIv-4L_-CJyUcosxHknPX4KjjnEhOOuPwY_zXL3z2qsAfaw2BD_bqO3vn78mVayBbg0BqtQoDTdXUMXZpzmr7c0O-kXNPs7wztcbuIaaFQrpDplULNQptrlUuFjj1-UjVHCbbfCLjyrvYKmr2b0Ch06FYl8_1FNw_fnT1eYrurj88m1zfoF0x1lFxFBntZt4z93IqTZ06Cc7TAxzxYQaiFHcCSG0tphOSo-js2acnGH9NOrJdKfg_X7vNqfvqy1VLr7o9qqKNq1F0kEw3NFR8Ia-e4LepjXHdp2kza-BYUy7Rr19oNap_Se3uVmRd_LR1gaIPaBzKiVbJ7Wvqvp7U3yQBMu_Ccp9grIlKO8TlKRJ6RPp4_ZnRd1eVBocZ5v_nf2M6g8pWLEv |
| CitedBy_id | crossref_primary_10_1007_s00247_024_05953_1 crossref_primary_10_1007_s13246_024_01465_2 crossref_primary_10_1007_s11548_023_02862_w crossref_primary_10_3390_jcdd11010022 crossref_primary_10_1097_MD_0000000000038161 crossref_primary_10_1016_j_slast_2024_100196 |
| Cites_doi | 10.1536/ihj.18-340 10.2214/ajr.176.5.1761267 10.1259/bjr.20140140 10.1016/j.pcad.2018.11.002 10.1148/radiol.2017171734 10.1109/TMI.2018.2827462 10.1093/ehjci/jey123 10.1148/radiol.2015132766 10.1093/eurheartj/eht512 10.1001/jama.2010.1664 10.1001/jama.2019.12821 10.1001/jama.2019.12843 10.1016/j.jcmg.2019.08.025 10.1148/radiol.2020191621 10.1016/j.radi.2021.07.006 10.1097/RTI.0000000000000259 10.1093/eurheartj/ehu281 10.1148/radiol.12120131 10.1016/j.ejrad.2020.109420 10.1148/radiol.14132478 10.1001/jama.283.7.897 10.1007/s00330-021-07714-2 10.1016/j.carj.2018.05.004 10.1161/CIRCIMAGING.119.009829 10.1016/j.ccl.2019.01.001 10.1097/RLI.0000000000000272 10.1007/s11547-021-01384-2 10.1007/s00330-020-07358-8 10.1016/j.acra.2016.03.015 10.1016/j.ejrad.2018.05.028 10.1016/j.jcct.2020.01.002 10.1007/s00330-020-06724-w 10.1016/j.ejmp.2020.10.014 10.1016/j.jcmg.2020.08.024 10.1109/TMI.2016.2535865 10.1259/bjr/93277434 10.1148/radiology.201.1.8816517 10.3389/fphys.2017.00238 10.1016/j.crad.2016.07.018 10.1136/heartjnl-2020-317949 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to European Society of Radiology 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to European Society of Radiology. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to European Society of Radiology 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to European Society of Radiology. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00330-022-08975-1 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 689 |
| ExternalDocumentID | 35788754 10_1007_s00330_022_08975_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the Capital’s Funds for Health Improvement and Research Foundation of China grantid: 2020-1-1052 – fundername: the National Key Research and Development Program of China grantid: 2016YFC1300300 – fundername: the National Natural Science Foundation of China grantid: U1908211 – fundername: the Capital's Funds for Health Improvement and Research Foundation of China grantid: 2020-1-1052 – fundername: British Heart Foundation grantid: PG/16/78/32402 – fundername: Medical Research Council grantid: MR/V023799/1 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADHKG AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-1d2fecfb747f972cd264be6b507a58a61da7f888cce02bac99fed9bfd54b9cbd3 |
| IEDL.DBID | AGYKE |
| ISSN | 1432-1084 0938-7994 |
| IngestDate | Thu Sep 04 17:46:13 EDT 2025 Tue Oct 07 06:32:12 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Wed Oct 01 03:47:49 EDT 2025 Fri Feb 21 02:43:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Aortic CT angiography Image quality Contrast medium Augmented cycle-consistent adversarial framework Diagnostic accuracy |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to European Society of Radiology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-1d2fecfb747f972cd264be6b507a58a61da7f888cce02bac99fed9bfd54b9cbd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8499-0448 |
| PMID | 35788754 |
| PQID | 2754650023 |
| PQPubID | 54162 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2685032987 proquest_journals_2754650023 pubmed_primary_35788754 crossref_citationtrail_10_1007_s00330_022_08975_1 crossref_primary_10_1007_s00330_022_08975_1 springer_journals_10_1007_s00330_022_08975_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Schmidt, Flohr (CR7) 2020; 79 Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (CR9) 2016; 35 Yang, Yan, Zhang (CR15) 2018; 37 Yi, Zhao, Wu (CR33) 2019; 60 Desai, Solomon, Shah (CR24) 2019; 322 Karnik, Gopal, Ko, Benjamin, Helm (CR22) 2019; 37 Liu, Song, Dong (CR26) 2017; 8 Masuda, Funama, Nakaura (CR3) 2018; 69 Benz, Benetos, Rampidis (CR17) 2020; 14 Quint, Francis, Williams (CR39) 1996; 201 Parker, Matheson, Rao (CR38) 2001; 176 Haubold, Hosch, Umutlu (CR36) 2021; 31 Kahn (CR8) 2017; 285 Baskaran, Maliakal, Al'Aref (CR10) 2020; 13 Brady, Kaufman (CR18) 2012; 265 Knuuti, Bengel, Bax (CR2) 2014; 35 Piechowiak, Peter, Kleb, Klose, Heverhagen (CR29) 2015; 275 Benz, Grani, Hirt Moch (CR5) 2016; 23 Johansen, Martinsen, Enden, Svanteson (CR31) 2022; 28 Ippolito, Talei Franzesi, Fior, Bonaffini, Minutolo, Sironi (CR27) 2015; 88 Nwabuo, Moreira, Vasconcellos (CR21) 2019; 20 Zhang, Yang, Zhang (CR11) 2021; 134 Greffier, Hamard, Pereira (CR16) 2020; 30 Januzzi, Prescott, Butler (CR23) 2019; 322 Shrimpton, Hillier, Lewis, Dunn (CR19) 2006; 79 CR28 van Velzen, Lessmann, Velthuis (CR12) 2020; 295 Erbel, Aboyans, Boileau (CR1) 2014; 35 Albrecht, De Cecco, Schoepf (CR6) 2018; 105 Hagan, Nienaber, Isselbacher (CR37) 2000; 283 CR20 Albrecht, Trommer, Wichmann (CR32) 2016; 51 Sun, Li, Gao (CR35) 2021; 126 Park, Choo, Jung, Jeong, Hwang, Yun (CR34) 2021; 31 Eisenberg, McElhinney, Commandeur (CR14) 2020; 13 Nakanishi, Slomka, Rios (CR13) 2021; 14 Lenga, Albrecht, Othman (CR4) 2017; 32 Einstein, Weiner, Bernheim (CR40) 2010; 304 Geyer, Schoepf, Meinel (CR30) 2015; 276 Stewart, Lavie, Shah (CR25) 2018; 61 DC Benz (8975_CR17) 2020; 14 M Anthimopoulos (8975_CR9) 2016; 35 J Haubold (8975_CR36) 2021; 31 8975_CR28 Y Yi (8975_CR33) 2019; 60 J Sun (8975_CR35) 2021; 126 T Masuda (8975_CR3) 2018; 69 N Zhang (8975_CR11) 2021; 134 8975_CR20 EI Piechowiak (8975_CR29) 2015; 275 SL Brady (8975_CR18) 2012; 265 MH Albrecht (8975_CR32) 2016; 51 JL Januzzi Jr (8975_CR23) 2019; 322 J Knuuti (8975_CR2) 2014; 35 DC Benz (8975_CR5) 2016; 23 L Lenga (8975_CR4) 2017; 32 L Baskaran (8975_CR10) 2020; 13 AA Karnik (8975_CR22) 2019; 37 T Liu (8975_CR26) 2017; 8 CB Johansen (8975_CR31) 2022; 28 MS Parker (8975_CR38) 2001; 176 MH Albrecht (8975_CR6) 2018; 105 J Greffier (8975_CR16) 2020; 30 B Schmidt (8975_CR7) 2020; 79 PG Hagan (8975_CR37) 2000; 283 AJ Einstein (8975_CR40) 2010; 304 PC Shrimpton (8975_CR19) 2006; 79 CC Nwabuo (8975_CR21) 2019; 20 SGM van Velzen (8975_CR12) 2020; 295 R Nakanishi (8975_CR13) 2021; 14 Q Yang (8975_CR15) 2018; 37 AS Desai (8975_CR24) 2019; 322 E Eisenberg (8975_CR14) 2020; 13 D Ippolito (8975_CR27) 2015; 88 LL Geyer (8975_CR30) 2015; 276 R Erbel (8975_CR1) 2014; 35 LE Quint (8975_CR39) 1996; 201 CE Kahn Jr (8975_CR8) 2017; 285 C Park (8975_CR34) 2021; 31 MH Stewart (8975_CR25) 2018; 61 36380198 - Eur Radiol. 2023 Jan;33(1):742. doi: 10.1007/s00330-022-09169-5. |
| References_xml | – volume: 60 start-page: 608 year: 2019 end-page: 617 ident: CR33 article-title: Low dose and low contrast medium coronary CT angiography using dual-layer spectral detector CT publication-title: Int Heart J doi: 10.1536/ihj.18-340 – volume: 176 start-page: 1267 year: 2001 end-page: 1272 ident: CR38 article-title: Making the transition: the role of helical CT in the evaluation of potentially acute thoracic aortic injuries publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.176.5.1761267 – volume: 88 start-page: 20140140 year: 2015 ident: CR27 article-title: Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study publication-title: Br J Radiol doi: 10.1259/bjr.20140140 – volume: 61 start-page: 446 year: 2018 end-page: 455 ident: CR25 article-title: Prognostic implications of left ventricular hypertrophy publication-title: Prog Cardiovasc Dis doi: 10.1016/j.pcad.2018.11.002 – volume: 285 start-page: 719 year: 2017 end-page: 720 ident: CR8 article-title: From images to actions: opportunities for artificial intelligence in radiology publication-title: Radiology doi: 10.1148/radiol.2017171734 – volume: 37 start-page: 1348 year: 2018 end-page: 1357 ident: CR15 article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2827462 – volume: 20 start-page: 533 year: 2019 end-page: 540 ident: CR21 article-title: Left ventricular global function index predicts incident heart failure and cardiovascular disease in young adults: the coronary artery risk development in young adults (CARDIA) study publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jey123 – volume: 276 start-page: 339 year: 2015 end-page: 357 ident: CR30 article-title: State of the art: iterative CT reconstruction techniques publication-title: Radiology doi: 10.1148/radiol.2015132766 – volume: 35 start-page: 633 year: 2014 end-page: 638 ident: CR2 article-title: Risks and benefits of cardiac imaging: an analysis of risks related to imaging for coronary artery disease publication-title: Eur Heart J doi: 10.1093/eurheartj/eht512 – volume: 304 start-page: 2137 year: 2010 end-page: 2144 ident: CR40 article-title: Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging publication-title: JAMA doi: 10.1001/jama.2010.1664 – volume: 322 start-page: 1085 year: 2019 end-page: 1095 ident: CR23 article-title: Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction publication-title: JAMA doi: 10.1001/jama.2019.12821 – volume: 322 start-page: 1077 year: 2019 end-page: 1084 ident: CR24 article-title: Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2019.12843 – volume: 13 start-page: 1163 year: 2020 end-page: 1171 ident: CR10 article-title: Identification and quantification of cardiovascular structures from CCTA: an end-to-end, rapid, pixel-wise, deep-learning method publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2019.08.025 – volume: 295 start-page: 66 year: 2020 end-page: 79 ident: CR12 article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols publication-title: Radiology doi: 10.1148/radiol.2020191621 – volume: 28 start-page: 2 year: 2022 end-page: 7 ident: CR31 article-title: The potential of iodinated contrast reduction in dual-energy CT thoracic angiography; an evaluation of image quality publication-title: Radiography (Lond) doi: 10.1016/j.radi.2021.07.006 – volume: 32 start-page: 151 year: 2017 end-page: 158 ident: CR4 article-title: Monoenergetic dual-energy computed tomographic imaging: cardiothoracic applications publication-title: J Thorac Imaging doi: 10.1097/RTI.0000000000000259 – volume: 35 start-page: 2873 year: 2014 end-page: 2926 ident: CR1 article-title: 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu281 – volume: 265 start-page: 832 year: 2012 end-page: 840 ident: CR18 article-title: Investigation of American Association of Physicists in Medicine Report 204 size-specific dose estimates for pediatric CT implementation publication-title: Radiology doi: 10.1148/radiol.12120131 – volume: 134 start-page: 109420 year: 2021 ident: CR11 article-title: Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan: total and vessel-specific quantifications publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109420 – volume: 275 start-page: 692 year: 2015 end-page: 697 ident: CR29 article-title: Intravenous iodinated contrast agents amplify DNA radiation damage at CT publication-title: Radiology doi: 10.1148/radiol.14132478 – volume: 283 start-page: 897 year: 2000 end-page: 903 ident: CR37 article-title: The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease publication-title: JAMA doi: 10.1001/jama.283.7.897 – volume: 31 start-page: 6087 year: 2021 end-page: 6095 ident: CR36 article-title: Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network publication-title: Eur Radiol doi: 10.1007/s00330-021-07714-2 – volume: 69 start-page: 390 year: 2018 end-page: 396 ident: CR3 article-title: Radiation dose reduction with a low-tube voltage technique for pediatric chest computed tomographic angiography based on the contrast-to-noise ratio index publication-title: Can Assoc Radiol J doi: 10.1016/j.carj.2018.05.004 – volume: 13 year: 2020 ident: CR14 article-title: Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.119.009829 – volume: 37 start-page: 119 year: 2019 end-page: 129 ident: CR22 article-title: Epidemiology of atrial fibrillation and heart failure: a growing and important problem publication-title: Cardiol Clin doi: 10.1016/j.ccl.2019.01.001 – volume: 51 start-page: 582 year: 2016 end-page: 590 ident: CR32 article-title: Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000272 – volume: 126 start-page: 1181 year: 2021 end-page: 1188 ident: CR35 article-title: Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in “double low” chest CTA in children: a feasibility study publication-title: Radiol Med doi: 10.1007/s11547-021-01384-2 – volume: 31 start-page: 3156 year: 2021 end-page: 3164 ident: CR34 article-title: CT iterative vs deep learning reconstruction: comparison of noise and sharpness publication-title: Eur Radiol doi: 10.1007/s00330-020-07358-8 – volume: 23 start-page: 1008 year: 2016 end-page: 1014 ident: CR5 article-title: Minimized radiation and contrast agent exposure for coronary computed tomography angiography: first clinical experience on a latest generation 256-slice scanner publication-title: Acad Radiol doi: 10.1016/j.acra.2016.03.015 – volume: 105 start-page: 110 year: 2018 end-page: 118 ident: CR6 article-title: Dual-energy CT of the heart current and future status publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.05.028 – volume: 14 start-page: 444 year: 2020 end-page: 451 ident: CR17 article-title: Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2020.01.002 – volume: 30 start-page: 3951 year: 2020 end-page: 3959 ident: CR16 article-title: Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w – volume: 79 start-page: 36 year: 2020 end-page: 46 ident: CR7 article-title: Principles and applications of dual source CT publication-title: Phys Med doi: 10.1016/j.ejmp.2020.10.014 – volume: 14 start-page: 615 year: 2021 end-page: 625 ident: CR13 article-title: Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2020.08.024 – volume: 35 start-page: 1207 year: 2016 end-page: 1216 ident: CR9 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535865 – volume: 79 start-page: 968 year: 2006 end-page: 980 ident: CR19 article-title: National survey of doses from CT in the UK: 2003 publication-title: Br J Radiol doi: 10.1259/bjr/93277434 – ident: CR28 – volume: 201 start-page: 37 year: 1996 end-page: 41 ident: CR39 article-title: Evaluation of thoracic aortic disease with the use of helical CT and multiplanar reconstructions: comparison with surgical findings publication-title: Radiology doi: 10.1148/radiology.201.1.8816517 – volume: 8 start-page: 238 year: 2017 ident: CR26 article-title: Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure publication-title: Front Physiol doi: 10.3389/fphys.2017.00238 – ident: CR20 – volume: 20 start-page: 533 year: 2019 ident: 8975_CR21 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jey123 – volume: 201 start-page: 37 year: 1996 ident: 8975_CR39 publication-title: Radiology doi: 10.1148/radiology.201.1.8816517 – volume: 322 start-page: 1085 year: 2019 ident: 8975_CR23 publication-title: JAMA doi: 10.1001/jama.2019.12821 – volume: 37 start-page: 1348 year: 2018 ident: 8975_CR15 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2827462 – volume: 35 start-page: 633 year: 2014 ident: 8975_CR2 publication-title: Eur Heart J doi: 10.1093/eurheartj/eht512 – volume: 31 start-page: 6087 year: 2021 ident: 8975_CR36 publication-title: Eur Radiol doi: 10.1007/s00330-021-07714-2 – volume: 275 start-page: 692 year: 2015 ident: 8975_CR29 publication-title: Radiology doi: 10.1148/radiol.14132478 – volume: 35 start-page: 1207 year: 2016 ident: 8975_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535865 – volume: 276 start-page: 339 year: 2015 ident: 8975_CR30 publication-title: Radiology doi: 10.1148/radiol.2015132766 – volume: 37 start-page: 119 year: 2019 ident: 8975_CR22 publication-title: Cardiol Clin doi: 10.1016/j.ccl.2019.01.001 – ident: 8975_CR28 doi: 10.1016/j.crad.2016.07.018 – volume: 283 start-page: 897 year: 2000 ident: 8975_CR37 publication-title: JAMA doi: 10.1001/jama.283.7.897 – volume: 32 start-page: 151 year: 2017 ident: 8975_CR4 publication-title: J Thorac Imaging doi: 10.1097/RTI.0000000000000259 – volume: 13 year: 2020 ident: 8975_CR14 publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.119.009829 – volume: 60 start-page: 608 year: 2019 ident: 8975_CR33 publication-title: Int Heart J doi: 10.1536/ihj.18-340 – volume: 295 start-page: 66 year: 2020 ident: 8975_CR12 publication-title: Radiology doi: 10.1148/radiol.2020191621 – volume: 126 start-page: 1181 year: 2021 ident: 8975_CR35 publication-title: Radiol Med doi: 10.1007/s11547-021-01384-2 – ident: 8975_CR20 doi: 10.1136/heartjnl-2020-317949 – volume: 176 start-page: 1267 year: 2001 ident: 8975_CR38 publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.176.5.1761267 – volume: 322 start-page: 1077 year: 2019 ident: 8975_CR24 publication-title: JAMA doi: 10.1001/jama.2019.12843 – volume: 14 start-page: 444 year: 2020 ident: 8975_CR17 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2020.01.002 – volume: 30 start-page: 3951 year: 2020 ident: 8975_CR16 publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w – volume: 134 start-page: 109420 year: 2021 ident: 8975_CR11 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109420 – volume: 69 start-page: 390 year: 2018 ident: 8975_CR3 publication-title: Can Assoc Radiol J doi: 10.1016/j.carj.2018.05.004 – volume: 35 start-page: 2873 year: 2014 ident: 8975_CR1 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu281 – volume: 61 start-page: 446 year: 2018 ident: 8975_CR25 publication-title: Prog Cardiovasc Dis doi: 10.1016/j.pcad.2018.11.002 – volume: 8 start-page: 238 year: 2017 ident: 8975_CR26 publication-title: Front Physiol doi: 10.3389/fphys.2017.00238 – volume: 79 start-page: 36 year: 2020 ident: 8975_CR7 publication-title: Phys Med doi: 10.1016/j.ejmp.2020.10.014 – volume: 13 start-page: 1163 year: 2020 ident: 8975_CR10 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2019.08.025 – volume: 265 start-page: 832 year: 2012 ident: 8975_CR18 publication-title: Radiology doi: 10.1148/radiol.12120131 – volume: 88 start-page: 20140140 year: 2015 ident: 8975_CR27 publication-title: Br J Radiol doi: 10.1259/bjr.20140140 – volume: 105 start-page: 110 year: 2018 ident: 8975_CR6 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.05.028 – volume: 28 start-page: 2 year: 2022 ident: 8975_CR31 publication-title: Radiography (Lond) doi: 10.1016/j.radi.2021.07.006 – volume: 23 start-page: 1008 year: 2016 ident: 8975_CR5 publication-title: Acad Radiol doi: 10.1016/j.acra.2016.03.015 – volume: 285 start-page: 719 year: 2017 ident: 8975_CR8 publication-title: Radiology doi: 10.1148/radiol.2017171734 – volume: 14 start-page: 615 year: 2021 ident: 8975_CR13 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2020.08.024 – volume: 79 start-page: 968 year: 2006 ident: 8975_CR19 publication-title: Br J Radiol doi: 10.1259/bjr/93277434 – volume: 31 start-page: 3156 year: 2021 ident: 8975_CR34 publication-title: Eur Radiol doi: 10.1007/s00330-020-07358-8 – volume: 51 start-page: 582 year: 2016 ident: 8975_CR32 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000272 – volume: 304 start-page: 2137 year: 2010 ident: 8975_CR40 publication-title: JAMA doi: 10.1001/jama.2010.1664 – reference: 36380198 - Eur Radiol. 2023 Jan;33(1):742. doi: 10.1007/s00330-022-09169-5. |
| SSID | ssj0009147 |
| Score | 2.4520204 |
| Snippet | Objectives
To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial... To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework... ObjectivesTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 678 |
| SubjectTerms | Algorithms Angiography Aorta Aorta - diagnostic imaging Aortic Diseases - diagnostic imaging Artificial Intelligence Computed Tomography Computed Tomography Angiography - methods Contrast Media Datasets Diagnostic Radiology Diagnostic systems Humans Image contrast Image quality Image reconstruction Imaging Internal Medicine Interventional Radiology Medical diagnosis Medical imaging Medicine Medicine & Public Health Neuroradiology Parameters Radiation Dosage Radiographic Image Interpretation, Computer-Assisted - methods Radiology Ultrasound |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LatwwFL2kEyjdlL7jNikqdNeKWrZlW4UQ0pAQChlKSSA7o5fDwMSezHgIoZv-Q_-wX1JdWZ5pCMlWD1voSrov6RyAj1IniWS1pmWecZrxOHbnoOGUG1eaIoa-h9g4GefHZ9n3c36-AePhLQxeqxzORH9Qm1ZjjPxLUiBtN6qYvdkVRdYozK4OFBoyUCuYXQ8x9gg2E0TGGsHmt8Pxj59rGF7mKcecG1_SQogsPKPxj-mQ1iymeLs9LkXBKbutqu7Yn3dyp14lHT2Dp8GWJPu98J_Dhm1ewOOTkC1_Cb-wpkeIIJP_oDf__v6DyssQjL0T2WJ_cnBKZHMxCQjWZHLp6YsIxmnJctrNJZ2219S0C0v89Xa56Agm5peXX4kks7mden6w-Q3xiLWv4Ozo8PTgmAayBarTgneUmaS2ulbOvahFkWjjLCVlc-XsRclLmTMji9q5y1rbOFFSC1FbI1RteKaEViZ9DaOmbewWEKFZ6cqyvGY2i6UzYFxnZVOZ5kZoHUfAhnmtdEAiR0KMabXCUPayqJwsKi-LikXwadVn1uNwPNh6exBXFfbkolqvoAg-rKrdbsIUiWxsu3Rt8pLHaSLKIoI3vZhXv0NcIOfdZRF8HuS-_vj9Y3n78FjewRNksO-jOtsw6uZLu-PsnE69D4v3H0AB-xo priority: 102 providerName: ProQuest |
| Title | Artificial intelligence–based full aortic CT angiography imaging with ultra-low-dose contrast medium: a preliminary study |
| URI | https://link.springer.com/article/10.1007/s00330-022-08975-1 https://www.ncbi.nlm.nih.gov/pubmed/35788754 https://www.proquest.com/docview/2754650023 https://www.proquest.com/docview/2685032987 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7BVkK8cB-BsjISb-Aql3PwtlvttgJ1hVBXWp4iX6lWbJNqN1HV9oX_wD_sL-nYOQoUkPqSSLYncZwZe8Yz_gbgHZe-z71c0iQKGQ2Z6-I8qBhlCksDg6FvITYOZtH-PPy0YIv2UNimi3bvXJJ2pu4Pu5m0Yy410eduksaMos2zZfG2BrA12vv2eXINtuuFcXtA5u-Uvy9CNzTLG15Ru9hMH8K862YTY_J9p67Ejjz_A8Hxtt_xCB602icZNezyGO7o4gncO2j960_hwtQ0mBJk-QtY5-WPn2a5U8Ts1hNeGnqye0h4cbRsMa_J8tgmPCJmZ5fUq2rN6ao8parcaGID4vmmIsaVXx9_JJycrPXKZhRbnxGLcfsM5tPJ4e4-bdMzUBnErKKe8nMtc4EGSZ7GvlSoWwkdCdQwOUt45Cke52hgS6ldX3CZprlWqcgVC0UqhQqew6AoC_0SSCq9BMvCKPd06HJUeZBY6IAHkUqldB3wuv-VyRa73KTQWGU96rId1QxHNbOjmnkOvO9pThrkjv-23u7YIGuleJP5sUkVb9QaB9721Sh_xqnCC13W2CZKmBv4aRI78KJhn_51BkkI7cHQgQ8dK1w__N99eXW75q_hvo9dbPaFtmFQrWv9BjWlSgzhbryI8ZpM94YoJNPxeDZshQXv48nsy1esnfujK-Y3Em8 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4amwTcIP7pGGAkuAKLxLGTGGlCMDZ1bK0Q6qTdBcd2UKUu6dpU08QN78D78DA8CcdO0oImdrdb_yXysc-f7e8DeKE0YyosNE1jLigXQYB60AgqDJZGDkPfQ2wMhnH_iH86Fsdr8Kt7C-OuVXY60StqU2mXI3_DEkfb7UzMu-kpdaxR7nS1o9BQLbWC2fYQY-3DjgN7foYh3Hx7_yPK-yVje7ujnT5tWQaojhJR09CwwuoiR7-6kAnTBl2E3MY5OkpKpCoOjUoKjBO1tgHLlZaysEbmhRE8lzo3EY57DTZ4xCUGfxsfdoefv6xgf0NPcRZIVCuJlLx9tuMf7zkatYC62_RBKhNBw39N4wV_98JZrTeBe7fhVuu7kvfNYrsDa7a8C9cH7en8PfjuahpECjL-C-rz94-fzlga4nL9RFWuP9kZEVV-G7eI2WR84umSiMsLk8Wknik6qc6oqeaW-Ov0al4TdxFgcfKWKDKd2YnnI5udE4-Qex-OrmTaH8B6WZX2ERCpwxTLeFyElgcKHSbsnNtIRbGRWgc9CLt5zXSLfO4IOCbZErPZyyJDWWReFlnYg1fLPtMG9-PS1luduLJWB8yz1YrtwfNlNe5edySjSlstsE2ciiBiMk168LAR8_JzDocIo0neg9ed3FeD__9fNi__l2dwoz8aHGaH-8ODx3CTYVGTUdqC9Xq2sE_Qx6rzp-1CJvD1qvfOH_48O3k |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcUPkPLWAkOIHVxInjuBJCqGXVUlpxaKW9Bcd20ErbZLubVVX1wjvwNn0cnoSxk-yCKnrr1X-JPDP22DP-PoA3SjOmolLTLE04TXgY4jpoOOUGS2OHoe8hNg6P0r2T5MuQD1fgqn8L49Iq-zXRL9Sm1u6OfIsJR9vttpitskuL-LY7-Dg5o45BykVaezqNVkUO7MU5Ht9mH_Z3UdZvGRt8Pt7Zox3DANWx4A2NDCutLgv0qUspmDboHhQ2LdBJUjxTaWSUKPGMqLUNWaG0lKU1sigNTwqpCxPjuHfgrohj6dIJxVAsAX8jT24WSlxQhJRJ92DHP9tzBGohdXn0YSYFp9G_m-I1T_dalNZvfoN1uN95reRTq2YPYMVWD2HtsIvLP4JLV9NiUZDRXyCfv3_-ctukIW4yiapdf7JzTFT1Y9RhZZPRqSdKIu5GmMzHzVTRcX1OTT2zxCfSq1lDXArA_HSbKDKZ2rFnIpteEI-N-xhObmXSn8BqVVf2GRCpowzLkrSMbBIqdJWwc2FjFadGah0GEPXzmusO89xRb4zzBVqzl0WOssi9LPIogHeLPpMW8ePG1pu9uPLO-mf5UlcDeL2oRrt1wRhV2XqObdKMhzGTmQjgaSvmxeccAhGeI5MA3vdyXw7-_395fvO_vII1tJj86_7RwQbcY1jSXiVtwmozndsX6Fw1xUuvxQS-37bZ_AFpwjkT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence%E2%80%93based+full+aortic+CT+angiography+imaging+with+ultra-low-dose+contrast+medium%3A+a+preliminary+study&rft.jtitle=European+radiology&rft.au=Zhou%2C+Zhen&rft.au=Gao%2C+Yifeng&rft.au=Zhang%2C+Weiwei&rft.au=Bo%2C+Kairui&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1432-1084&rft.volume=33&rft.issue=1&rft.spage=678&rft.epage=689&rft_id=info:doi/10.1007%2Fs00330-022-08975-1&rft.externalDocID=10_1007_s00330_022_08975_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |