Artificial intelligence–based full aortic CT angiography imaging with ultra-low-dose contrast medium: a preliminary study

Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scan...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 33; no. 1; pp. 678 - 689
Main Authors Zhou, Zhen, Gao, Yifeng, Zhang, Weiwei, Bo, Kairui, Zhang, Nan, Wang, Hui, Wang, Rui, Du, Zhiqiang, Firmin, David, Yang, Guang, Zhang, Heye, Xu, Lei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-022-08975-1

Cover

Abstract Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets ( n = 100) and the validation datasets ( n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. Results The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K -values > 0.80, p < 0.05). Conclusions The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. Key Points • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
AbstractList To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.OBJECTIVESTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.METHODSWe prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).RESULTSThe mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.CONCLUSIONSThe required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.KEY POINTS• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets ( n = 100) and the validation datasets ( n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. Results The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K -values > 0.80, p < 0.05). Conclusions The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. Key Points • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05). The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
ObjectivesTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm.MethodsWe prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets (n = 100) and the validation datasets (n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy.ResultsThe mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K-values > 0.80, p < 0.05).ConclusionsThe required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm.Key Points• The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm.• Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images.• No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
Author Zhang, Heye
Zhou, Zhen
Firmin, David
Yang, Guang
Wang, Hui
Zhang, Nan
Du, Zhiqiang
Xu, Lei
Zhang, Weiwei
Gao, Yifeng
Bo, Kairui
Wang, Rui
Author_xml – sequence: 1
  givenname: Zhen
  surname: Zhou
  fullname: Zhou, Zhen
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 2
  givenname: Yifeng
  surname: Gao
  fullname: Gao, Yifeng
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 3
  givenname: Weiwei
  surname: Zhang
  fullname: Zhang, Weiwei
  organization: School of Biomedical Engineering, Sun Yat-Sen University
– sequence: 4
  givenname: Kairui
  surname: Bo
  fullname: Bo, Kairui
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 5
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 6
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 7
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 8
  givenname: Zhiqiang
  surname: Du
  fullname: Du, Zhiqiang
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
– sequence: 9
  givenname: David
  surname: Firmin
  fullname: Firmin, David
  organization: Cardiovascular Research Centre, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London
– sequence: 10
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: Cardiovascular Research Centre, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London
– sequence: 11
  givenname: Heye
  surname: Zhang
  fullname: Zhang, Heye
  organization: School of Biomedical Engineering, Sun Yat-Sen University
– sequence: 12
  givenname: Lei
  orcidid: 0000-0002-8499-0448
  surname: Xu
  fullname: Xu, Lei
  email: leixu2001@hotmail.com
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35788754$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtqHTEQhkWwiS_JC6QIgjRpFEva1UqbzhxyA4MbuxZaXdYyWulE0mIOafIOecM8SRQfmwQXrmYGvn-Y-f8TcBBTtAC8IfgDwZifFYy7DiNMKcJi5AyRF-CY9B1FBIv-4L_-CJyUcosxHknPX4KjjnEhOOuPwY_zXL3z2qsAfaw2BD_bqO3vn78mVayBbg0BqtQoDTdXUMXZpzmr7c0O-kXNPs7wztcbuIaaFQrpDplULNQptrlUuFjj1-UjVHCbbfCLjyrvYKmr2b0Ch06FYl8_1FNw_fnT1eYrurj88m1zfoF0x1lFxFBntZt4z93IqTZ06Cc7TAxzxYQaiFHcCSG0tphOSo-js2acnGH9NOrJdKfg_X7vNqfvqy1VLr7o9qqKNq1F0kEw3NFR8Ia-e4LepjXHdp2kza-BYUy7Rr19oNap_Se3uVmRd_LR1gaIPaBzKiVbJ7Wvqvp7U3yQBMu_Ccp9grIlKO8TlKRJ6RPp4_ZnRd1eVBocZ5v_nf2M6g8pWLEv
CitedBy_id crossref_primary_10_1007_s00247_024_05953_1
crossref_primary_10_1007_s13246_024_01465_2
crossref_primary_10_1007_s11548_023_02862_w
crossref_primary_10_3390_jcdd11010022
crossref_primary_10_1097_MD_0000000000038161
crossref_primary_10_1016_j_slast_2024_100196
Cites_doi 10.1536/ihj.18-340
10.2214/ajr.176.5.1761267
10.1259/bjr.20140140
10.1016/j.pcad.2018.11.002
10.1148/radiol.2017171734
10.1109/TMI.2018.2827462
10.1093/ehjci/jey123
10.1148/radiol.2015132766
10.1093/eurheartj/eht512
10.1001/jama.2010.1664
10.1001/jama.2019.12821
10.1001/jama.2019.12843
10.1016/j.jcmg.2019.08.025
10.1148/radiol.2020191621
10.1016/j.radi.2021.07.006
10.1097/RTI.0000000000000259
10.1093/eurheartj/ehu281
10.1148/radiol.12120131
10.1016/j.ejrad.2020.109420
10.1148/radiol.14132478
10.1001/jama.283.7.897
10.1007/s00330-021-07714-2
10.1016/j.carj.2018.05.004
10.1161/CIRCIMAGING.119.009829
10.1016/j.ccl.2019.01.001
10.1097/RLI.0000000000000272
10.1007/s11547-021-01384-2
10.1007/s00330-020-07358-8
10.1016/j.acra.2016.03.015
10.1016/j.ejrad.2018.05.028
10.1016/j.jcct.2020.01.002
10.1007/s00330-020-06724-w
10.1016/j.ejmp.2020.10.014
10.1016/j.jcmg.2020.08.024
10.1109/TMI.2016.2535865
10.1259/bjr/93277434
10.1148/radiology.201.1.8816517
10.3389/fphys.2017.00238
10.1016/j.crad.2016.07.018
10.1136/heartjnl-2020-317949
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to European Society of Radiology.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to European Society of Radiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-022-08975-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 689
ExternalDocumentID 35788754
10_1007_s00330_022_08975_1
Genre Journal Article
GrantInformation_xml – fundername: the Capital’s Funds for Health Improvement and Research Foundation of China
  grantid: 2020-1-1052
– fundername: the National Key Research and Development Program of China
  grantid: 2016YFC1300300
– fundername: the National Natural Science Foundation of China
  grantid: U1908211
– fundername: the Capital's Funds for Health Improvement and Research Foundation of China
  grantid: 2020-1-1052
– fundername: British Heart Foundation
  grantid: PG/16/78/32402
– fundername: Medical Research Council
  grantid: MR/V023799/1
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-1d2fecfb747f972cd264be6b507a58a61da7f888cce02bac99fed9bfd54b9cbd3
IEDL.DBID AGYKE
ISSN 1432-1084
0938-7994
IngestDate Thu Sep 04 17:46:13 EDT 2025
Tue Oct 07 06:32:12 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Wed Oct 01 03:47:49 EDT 2025
Fri Feb 21 02:43:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aortic CT angiography
Image quality
Contrast medium
Augmented cycle-consistent adversarial framework
Diagnostic accuracy
Language English
License 2022. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1d2fecfb747f972cd264be6b507a58a61da7f888cce02bac99fed9bfd54b9cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8499-0448
PMID 35788754
PQID 2754650023
PQPubID 54162
PageCount 12
ParticipantIDs proquest_miscellaneous_2685032987
proquest_journals_2754650023
pubmed_primary_35788754
crossref_citationtrail_10_1007_s00330_022_08975_1
crossref_primary_10_1007_s00330_022_08975_1
springer_journals_10_1007_s00330_022_08975_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Schmidt, Flohr (CR7) 2020; 79
Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (CR9) 2016; 35
Yang, Yan, Zhang (CR15) 2018; 37
Yi, Zhao, Wu (CR33) 2019; 60
Desai, Solomon, Shah (CR24) 2019; 322
Karnik, Gopal, Ko, Benjamin, Helm (CR22) 2019; 37
Liu, Song, Dong (CR26) 2017; 8
Masuda, Funama, Nakaura (CR3) 2018; 69
Benz, Benetos, Rampidis (CR17) 2020; 14
Quint, Francis, Williams (CR39) 1996; 201
Parker, Matheson, Rao (CR38) 2001; 176
Haubold, Hosch, Umutlu (CR36) 2021; 31
Kahn (CR8) 2017; 285
Baskaran, Maliakal, Al'Aref (CR10) 2020; 13
Brady, Kaufman (CR18) 2012; 265
Knuuti, Bengel, Bax (CR2) 2014; 35
Piechowiak, Peter, Kleb, Klose, Heverhagen (CR29) 2015; 275
Benz, Grani, Hirt Moch (CR5) 2016; 23
Johansen, Martinsen, Enden, Svanteson (CR31) 2022; 28
Ippolito, Talei Franzesi, Fior, Bonaffini, Minutolo, Sironi (CR27) 2015; 88
Nwabuo, Moreira, Vasconcellos (CR21) 2019; 20
Zhang, Yang, Zhang (CR11) 2021; 134
Greffier, Hamard, Pereira (CR16) 2020; 30
Januzzi, Prescott, Butler (CR23) 2019; 322
Shrimpton, Hillier, Lewis, Dunn (CR19) 2006; 79
CR28
van Velzen, Lessmann, Velthuis (CR12) 2020; 295
Erbel, Aboyans, Boileau (CR1) 2014; 35
Albrecht, De Cecco, Schoepf (CR6) 2018; 105
Hagan, Nienaber, Isselbacher (CR37) 2000; 283
CR20
Albrecht, Trommer, Wichmann (CR32) 2016; 51
Sun, Li, Gao (CR35) 2021; 126
Park, Choo, Jung, Jeong, Hwang, Yun (CR34) 2021; 31
Eisenberg, McElhinney, Commandeur (CR14) 2020; 13
Nakanishi, Slomka, Rios (CR13) 2021; 14
Lenga, Albrecht, Othman (CR4) 2017; 32
Einstein, Weiner, Bernheim (CR40) 2010; 304
Geyer, Schoepf, Meinel (CR30) 2015; 276
Stewart, Lavie, Shah (CR25) 2018; 61
DC Benz (8975_CR17) 2020; 14
M Anthimopoulos (8975_CR9) 2016; 35
J Haubold (8975_CR36) 2021; 31
8975_CR28
Y Yi (8975_CR33) 2019; 60
J Sun (8975_CR35) 2021; 126
T Masuda (8975_CR3) 2018; 69
N Zhang (8975_CR11) 2021; 134
8975_CR20
EI Piechowiak (8975_CR29) 2015; 275
SL Brady (8975_CR18) 2012; 265
MH Albrecht (8975_CR32) 2016; 51
JL Januzzi Jr (8975_CR23) 2019; 322
J Knuuti (8975_CR2) 2014; 35
DC Benz (8975_CR5) 2016; 23
L Lenga (8975_CR4) 2017; 32
L Baskaran (8975_CR10) 2020; 13
AA Karnik (8975_CR22) 2019; 37
T Liu (8975_CR26) 2017; 8
CB Johansen (8975_CR31) 2022; 28
MS Parker (8975_CR38) 2001; 176
MH Albrecht (8975_CR6) 2018; 105
J Greffier (8975_CR16) 2020; 30
B Schmidt (8975_CR7) 2020; 79
PG Hagan (8975_CR37) 2000; 283
AJ Einstein (8975_CR40) 2010; 304
PC Shrimpton (8975_CR19) 2006; 79
CC Nwabuo (8975_CR21) 2019; 20
SGM van Velzen (8975_CR12) 2020; 295
R Nakanishi (8975_CR13) 2021; 14
Q Yang (8975_CR15) 2018; 37
AS Desai (8975_CR24) 2019; 322
E Eisenberg (8975_CR14) 2020; 13
D Ippolito (8975_CR27) 2015; 88
LL Geyer (8975_CR30) 2015; 276
R Erbel (8975_CR1) 2014; 35
LE Quint (8975_CR39) 1996; 201
CE Kahn Jr (8975_CR8) 2017; 285
C Park (8975_CR34) 2021; 31
MH Stewart (8975_CR25) 2018; 61
36380198 - Eur Radiol. 2023 Jan;33(1):742. doi: 10.1007/s00330-022-09169-5.
References_xml – volume: 60
  start-page: 608
  year: 2019
  end-page: 617
  ident: CR33
  article-title: Low dose and low contrast medium coronary CT angiography using dual-layer spectral detector CT
  publication-title: Int Heart J
  doi: 10.1536/ihj.18-340
– volume: 176
  start-page: 1267
  year: 2001
  end-page: 1272
  ident: CR38
  article-title: Making the transition: the role of helical CT in the evaluation of potentially acute thoracic aortic injuries
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.176.5.1761267
– volume: 88
  start-page: 20140140
  year: 2015
  ident: CR27
  article-title: Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20140140
– volume: 61
  start-page: 446
  year: 2018
  end-page: 455
  ident: CR25
  article-title: Prognostic implications of left ventricular hypertrophy
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2018.11.002
– volume: 285
  start-page: 719
  year: 2017
  end-page: 720
  ident: CR8
  article-title: From images to actions: opportunities for artificial intelligence in radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2017171734
– volume: 37
  start-page: 1348
  year: 2018
  end-page: 1357
  ident: CR15
  article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2827462
– volume: 20
  start-page: 533
  year: 2019
  end-page: 540
  ident: CR21
  article-title: Left ventricular global function index predicts incident heart failure and cardiovascular disease in young adults: the coronary artery risk development in young adults (CARDIA) study
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jey123
– volume: 276
  start-page: 339
  year: 2015
  end-page: 357
  ident: CR30
  article-title: State of the art: iterative CT reconstruction techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 35
  start-page: 633
  year: 2014
  end-page: 638
  ident: CR2
  article-title: Risks and benefits of cardiac imaging: an analysis of risks related to imaging for coronary artery disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht512
– volume: 304
  start-page: 2137
  year: 2010
  end-page: 2144
  ident: CR40
  article-title: Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging
  publication-title: JAMA
  doi: 10.1001/jama.2010.1664
– volume: 322
  start-page: 1085
  year: 2019
  end-page: 1095
  ident: CR23
  article-title: Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction
  publication-title: JAMA
  doi: 10.1001/jama.2019.12821
– volume: 322
  start-page: 1077
  year: 2019
  end-page: 1084
  ident: CR24
  article-title: Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2019.12843
– volume: 13
  start-page: 1163
  year: 2020
  end-page: 1171
  ident: CR10
  article-title: Identification and quantification of cardiovascular structures from CCTA: an end-to-end, rapid, pixel-wise, deep-learning method
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2019.08.025
– volume: 295
  start-page: 66
  year: 2020
  end-page: 79
  ident: CR12
  article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols
  publication-title: Radiology
  doi: 10.1148/radiol.2020191621
– volume: 28
  start-page: 2
  year: 2022
  end-page: 7
  ident: CR31
  article-title: The potential of iodinated contrast reduction in dual-energy CT thoracic angiography; an evaluation of image quality
  publication-title: Radiography (Lond)
  doi: 10.1016/j.radi.2021.07.006
– volume: 32
  start-page: 151
  year: 2017
  end-page: 158
  ident: CR4
  article-title: Monoenergetic dual-energy computed tomographic imaging: cardiothoracic applications
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000259
– volume: 35
  start-page: 2873
  year: 2014
  end-page: 2926
  ident: CR1
  article-title: 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu281
– volume: 265
  start-page: 832
  year: 2012
  end-page: 840
  ident: CR18
  article-title: Investigation of American Association of Physicists in Medicine Report 204 size-specific dose estimates for pediatric CT implementation
  publication-title: Radiology
  doi: 10.1148/radiol.12120131
– volume: 134
  start-page: 109420
  year: 2021
  ident: CR11
  article-title: Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan: total and vessel-specific quantifications
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109420
– volume: 275
  start-page: 692
  year: 2015
  end-page: 697
  ident: CR29
  article-title: Intravenous iodinated contrast agents amplify DNA radiation damage at CT
  publication-title: Radiology
  doi: 10.1148/radiol.14132478
– volume: 283
  start-page: 897
  year: 2000
  end-page: 903
  ident: CR37
  article-title: The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease
  publication-title: JAMA
  doi: 10.1001/jama.283.7.897
– volume: 31
  start-page: 6087
  year: 2021
  end-page: 6095
  ident: CR36
  article-title: Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07714-2
– volume: 69
  start-page: 390
  year: 2018
  end-page: 396
  ident: CR3
  article-title: Radiation dose reduction with a low-tube voltage technique for pediatric chest computed tomographic angiography based on the contrast-to-noise ratio index
  publication-title: Can Assoc Radiol J
  doi: 10.1016/j.carj.2018.05.004
– volume: 13
  year: 2020
  ident: CR14
  article-title: Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.009829
– volume: 37
  start-page: 119
  year: 2019
  end-page: 129
  ident: CR22
  article-title: Epidemiology of atrial fibrillation and heart failure: a growing and important problem
  publication-title: Cardiol Clin
  doi: 10.1016/j.ccl.2019.01.001
– volume: 51
  start-page: 582
  year: 2016
  end-page: 590
  ident: CR32
  article-title: Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000272
– volume: 126
  start-page: 1181
  year: 2021
  end-page: 1188
  ident: CR35
  article-title: Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in “double low” chest CTA in children: a feasibility study
  publication-title: Radiol Med
  doi: 10.1007/s11547-021-01384-2
– volume: 31
  start-page: 3156
  year: 2021
  end-page: 3164
  ident: CR34
  article-title: CT iterative vs deep learning reconstruction: comparison of noise and sharpness
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07358-8
– volume: 23
  start-page: 1008
  year: 2016
  end-page: 1014
  ident: CR5
  article-title: Minimized radiation and contrast agent exposure for coronary computed tomography angiography: first clinical experience on a latest generation 256-slice scanner
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.03.015
– volume: 105
  start-page: 110
  year: 2018
  end-page: 118
  ident: CR6
  article-title: Dual-energy CT of the heart current and future status
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.05.028
– volume: 14
  start-page: 444
  year: 2020
  end-page: 451
  ident: CR17
  article-title: Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2020.01.002
– volume: 30
  start-page: 3951
  year: 2020
  end-page: 3959
  ident: CR16
  article-title: Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06724-w
– volume: 79
  start-page: 36
  year: 2020
  end-page: 46
  ident: CR7
  article-title: Principles and applications of dual source CT
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2020.10.014
– volume: 14
  start-page: 615
  year: 2021
  end-page: 625
  ident: CR13
  article-title: Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2020.08.024
– volume: 35
  start-page: 1207
  year: 2016
  end-page: 1216
  ident: CR9
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 79
  start-page: 968
  year: 2006
  end-page: 980
  ident: CR19
  article-title: National survey of doses from CT in the UK: 2003
  publication-title: Br J Radiol
  doi: 10.1259/bjr/93277434
– ident: CR28
– volume: 201
  start-page: 37
  year: 1996
  end-page: 41
  ident: CR39
  article-title: Evaluation of thoracic aortic disease with the use of helical CT and multiplanar reconstructions: comparison with surgical findings
  publication-title: Radiology
  doi: 10.1148/radiology.201.1.8816517
– volume: 8
  start-page: 238
  year: 2017
  ident: CR26
  article-title: Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00238
– ident: CR20
– volume: 20
  start-page: 533
  year: 2019
  ident: 8975_CR21
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jey123
– volume: 201
  start-page: 37
  year: 1996
  ident: 8975_CR39
  publication-title: Radiology
  doi: 10.1148/radiology.201.1.8816517
– volume: 322
  start-page: 1085
  year: 2019
  ident: 8975_CR23
  publication-title: JAMA
  doi: 10.1001/jama.2019.12821
– volume: 37
  start-page: 1348
  year: 2018
  ident: 8975_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2827462
– volume: 35
  start-page: 633
  year: 2014
  ident: 8975_CR2
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht512
– volume: 31
  start-page: 6087
  year: 2021
  ident: 8975_CR36
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07714-2
– volume: 275
  start-page: 692
  year: 2015
  ident: 8975_CR29
  publication-title: Radiology
  doi: 10.1148/radiol.14132478
– volume: 35
  start-page: 1207
  year: 2016
  ident: 8975_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 276
  start-page: 339
  year: 2015
  ident: 8975_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 37
  start-page: 119
  year: 2019
  ident: 8975_CR22
  publication-title: Cardiol Clin
  doi: 10.1016/j.ccl.2019.01.001
– ident: 8975_CR28
  doi: 10.1016/j.crad.2016.07.018
– volume: 283
  start-page: 897
  year: 2000
  ident: 8975_CR37
  publication-title: JAMA
  doi: 10.1001/jama.283.7.897
– volume: 32
  start-page: 151
  year: 2017
  ident: 8975_CR4
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000259
– volume: 13
  year: 2020
  ident: 8975_CR14
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.009829
– volume: 60
  start-page: 608
  year: 2019
  ident: 8975_CR33
  publication-title: Int Heart J
  doi: 10.1536/ihj.18-340
– volume: 295
  start-page: 66
  year: 2020
  ident: 8975_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.2020191621
– volume: 126
  start-page: 1181
  year: 2021
  ident: 8975_CR35
  publication-title: Radiol Med
  doi: 10.1007/s11547-021-01384-2
– ident: 8975_CR20
  doi: 10.1136/heartjnl-2020-317949
– volume: 176
  start-page: 1267
  year: 2001
  ident: 8975_CR38
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.176.5.1761267
– volume: 322
  start-page: 1077
  year: 2019
  ident: 8975_CR24
  publication-title: JAMA
  doi: 10.1001/jama.2019.12843
– volume: 14
  start-page: 444
  year: 2020
  ident: 8975_CR17
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2020.01.002
– volume: 30
  start-page: 3951
  year: 2020
  ident: 8975_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06724-w
– volume: 134
  start-page: 109420
  year: 2021
  ident: 8975_CR11
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109420
– volume: 69
  start-page: 390
  year: 2018
  ident: 8975_CR3
  publication-title: Can Assoc Radiol J
  doi: 10.1016/j.carj.2018.05.004
– volume: 35
  start-page: 2873
  year: 2014
  ident: 8975_CR1
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu281
– volume: 61
  start-page: 446
  year: 2018
  ident: 8975_CR25
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2018.11.002
– volume: 8
  start-page: 238
  year: 2017
  ident: 8975_CR26
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00238
– volume: 79
  start-page: 36
  year: 2020
  ident: 8975_CR7
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2020.10.014
– volume: 13
  start-page: 1163
  year: 2020
  ident: 8975_CR10
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2019.08.025
– volume: 265
  start-page: 832
  year: 2012
  ident: 8975_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.12120131
– volume: 88
  start-page: 20140140
  year: 2015
  ident: 8975_CR27
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20140140
– volume: 105
  start-page: 110
  year: 2018
  ident: 8975_CR6
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.05.028
– volume: 28
  start-page: 2
  year: 2022
  ident: 8975_CR31
  publication-title: Radiography (Lond)
  doi: 10.1016/j.radi.2021.07.006
– volume: 23
  start-page: 1008
  year: 2016
  ident: 8975_CR5
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.03.015
– volume: 285
  start-page: 719
  year: 2017
  ident: 8975_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2017171734
– volume: 14
  start-page: 615
  year: 2021
  ident: 8975_CR13
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2020.08.024
– volume: 79
  start-page: 968
  year: 2006
  ident: 8975_CR19
  publication-title: Br J Radiol
  doi: 10.1259/bjr/93277434
– volume: 31
  start-page: 3156
  year: 2021
  ident: 8975_CR34
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07358-8
– volume: 51
  start-page: 582
  year: 2016
  ident: 8975_CR32
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000272
– volume: 304
  start-page: 2137
  year: 2010
  ident: 8975_CR40
  publication-title: JAMA
  doi: 10.1001/jama.2010.1664
– reference: 36380198 - Eur Radiol. 2023 Jan;33(1):742. doi: 10.1007/s00330-022-09169-5.
SSID ssj0009147
Score 2.4520204
Snippet Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial...
To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework...
ObjectivesTo further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 678
SubjectTerms Algorithms
Angiography
Aorta
Aorta - diagnostic imaging
Aortic Diseases - diagnostic imaging
Artificial Intelligence
Computed Tomography
Computed Tomography Angiography - methods
Contrast Media
Datasets
Diagnostic Radiology
Diagnostic systems
Humans
Image contrast
Image quality
Image reconstruction
Imaging
Internal Medicine
Interventional Radiology
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Neuroradiology
Parameters
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LatwwFL2kEyjdlL7jNikqdNeKWrZlW4UQ0pAQChlKSSA7o5fDwMSezHgIoZv-Q_-wX1JdWZ5pCMlWD1voSrov6RyAj1IniWS1pmWecZrxOHbnoOGUG1eaIoa-h9g4GefHZ9n3c36-AePhLQxeqxzORH9Qm1ZjjPxLUiBtN6qYvdkVRdYozK4OFBoyUCuYXQ8x9gg2E0TGGsHmt8Pxj59rGF7mKcecG1_SQogsPKPxj-mQ1iymeLs9LkXBKbutqu7Yn3dyp14lHT2Dp8GWJPu98J_Dhm1ewOOTkC1_Cb-wpkeIIJP_oDf__v6DyssQjL0T2WJ_cnBKZHMxCQjWZHLp6YsIxmnJctrNJZ2219S0C0v89Xa56Agm5peXX4kks7mden6w-Q3xiLWv4Ozo8PTgmAayBarTgneUmaS2ulbOvahFkWjjLCVlc-XsRclLmTMji9q5y1rbOFFSC1FbI1RteKaEViZ9DaOmbewWEKFZ6cqyvGY2i6UzYFxnZVOZ5kZoHUfAhnmtdEAiR0KMabXCUPayqJwsKi-LikXwadVn1uNwPNh6exBXFfbkolqvoAg-rKrdbsIUiWxsu3Rt8pLHaSLKIoI3vZhXv0NcIOfdZRF8HuS-_vj9Y3n78FjewRNksO-jOtsw6uZLu-PsnE69D4v3H0AB-xo
  priority: 102
  providerName: ProQuest
Title Artificial intelligence–based full aortic CT angiography imaging with ultra-low-dose contrast medium: a preliminary study
URI https://link.springer.com/article/10.1007/s00330-022-08975-1
https://www.ncbi.nlm.nih.gov/pubmed/35788754
https://www.proquest.com/docview/2754650023
https://www.proquest.com/docview/2685032987
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7BVkK8cB-BsjISb-Aql3PwtlvttgJ1hVBXWp4iX6lWbJNqN1HV9oX_wD_sL-nYOQoUkPqSSLYncZwZe8Yz_gbgHZe-z71c0iQKGQ2Z6-I8qBhlCksDg6FvITYOZtH-PPy0YIv2UNimi3bvXJJ2pu4Pu5m0Yy410eduksaMos2zZfG2BrA12vv2eXINtuuFcXtA5u-Uvy9CNzTLG15Ru9hMH8K862YTY_J9p67Ejjz_A8Hxtt_xCB602icZNezyGO7o4gncO2j960_hwtQ0mBJk-QtY5-WPn2a5U8Ts1hNeGnqye0h4cbRsMa_J8tgmPCJmZ5fUq2rN6ao8parcaGID4vmmIsaVXx9_JJycrPXKZhRbnxGLcfsM5tPJ4e4-bdMzUBnErKKe8nMtc4EGSZ7GvlSoWwkdCdQwOUt45Cke52hgS6ldX3CZprlWqcgVC0UqhQqew6AoC_0SSCq9BMvCKPd06HJUeZBY6IAHkUqldB3wuv-VyRa73KTQWGU96rId1QxHNbOjmnkOvO9pThrkjv-23u7YIGuleJP5sUkVb9QaB9721Sh_xqnCC13W2CZKmBv4aRI78KJhn_51BkkI7cHQgQ8dK1w__N99eXW75q_hvo9dbPaFtmFQrWv9BjWlSgzhbryI8ZpM94YoJNPxeDZshQXv48nsy1esnfujK-Y3Em8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4amwTcIP7pGGAkuAKLxLGTGGlCMDZ1bK0Q6qTdBcd2UKUu6dpU08QN78D78DA8CcdO0oImdrdb_yXysc-f7e8DeKE0YyosNE1jLigXQYB60AgqDJZGDkPfQ2wMhnH_iH86Fsdr8Kt7C-OuVXY60StqU2mXI3_DEkfb7UzMu-kpdaxR7nS1o9BQLbWC2fYQY-3DjgN7foYh3Hx7_yPK-yVje7ujnT5tWQaojhJR09CwwuoiR7-6kAnTBl2E3MY5OkpKpCoOjUoKjBO1tgHLlZaysEbmhRE8lzo3EY57DTZ4xCUGfxsfdoefv6xgf0NPcRZIVCuJlLx9tuMf7zkatYC62_RBKhNBw39N4wV_98JZrTeBe7fhVuu7kvfNYrsDa7a8C9cH7en8PfjuahpECjL-C-rz94-fzlga4nL9RFWuP9kZEVV-G7eI2WR84umSiMsLk8Wknik6qc6oqeaW-Ov0al4TdxFgcfKWKDKd2YnnI5udE4-Qex-OrmTaH8B6WZX2ERCpwxTLeFyElgcKHSbsnNtIRbGRWgc9CLt5zXSLfO4IOCbZErPZyyJDWWReFlnYg1fLPtMG9-PS1luduLJWB8yz1YrtwfNlNe5edySjSlstsE2ciiBiMk168LAR8_JzDocIo0neg9ed3FeD__9fNi__l2dwoz8aHGaH-8ODx3CTYVGTUdqC9Xq2sE_Qx6rzp-1CJvD1qvfOH_48O3k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcUPkPLWAkOIHVxInjuBJCqGXVUlpxaKW9Bcd20ErbZLubVVX1wjvwNn0cnoSxk-yCKnrr1X-JPDP22DP-PoA3SjOmolLTLE04TXgY4jpoOOUGS2OHoe8hNg6P0r2T5MuQD1fgqn8L49Iq-zXRL9Sm1u6OfIsJR9vttpitskuL-LY7-Dg5o45BykVaezqNVkUO7MU5Ht9mH_Z3UdZvGRt8Pt7Zox3DANWx4A2NDCutLgv0qUspmDboHhQ2LdBJUjxTaWSUKPGMqLUNWaG0lKU1sigNTwqpCxPjuHfgrohj6dIJxVAsAX8jT24WSlxQhJRJ92DHP9tzBGohdXn0YSYFp9G_m-I1T_dalNZvfoN1uN95reRTq2YPYMVWD2HtsIvLP4JLV9NiUZDRXyCfv3_-ctukIW4yiapdf7JzTFT1Y9RhZZPRqSdKIu5GmMzHzVTRcX1OTT2zxCfSq1lDXArA_HSbKDKZ2rFnIpteEI-N-xhObmXSn8BqVVf2GRCpowzLkrSMbBIqdJWwc2FjFadGah0GEPXzmusO89xRb4zzBVqzl0WOssi9LPIogHeLPpMW8ePG1pu9uPLO-mf5UlcDeL2oRrt1wRhV2XqObdKMhzGTmQjgaSvmxeccAhGeI5MA3vdyXw7-_395fvO_vII1tJj86_7RwQbcY1jSXiVtwmozndsX6Fw1xUuvxQS-37bZ_AFpwjkT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence%E2%80%93based+full+aortic+CT+angiography+imaging+with+ultra-low-dose+contrast+medium%3A+a+preliminary+study&rft.jtitle=European+radiology&rft.au=Zhou%2C+Zhen&rft.au=Gao%2C+Yifeng&rft.au=Zhang%2C+Weiwei&rft.au=Bo%2C+Kairui&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1432-1084&rft.volume=33&rft.issue=1&rft.spage=678&rft.epage=689&rft_id=info:doi/10.1007%2Fs00330-022-08975-1&rft.externalDocID=10_1007_s00330_022_08975_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon