Artificial intelligence–based full aortic CT angiography imaging with ultra-low-dose contrast medium: a preliminary study

Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scan...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 33; no. 1; pp. 678 - 689
Main Authors Zhou, Zhen, Gao, Yifeng, Zhang, Weiwei, Bo, Kairui, Zhang, Nan, Wang, Hui, Wang, Rui, Du, Zhiqiang, Firmin, David, Yang, Guang, Zhang, Heye, Xu, Lei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-022-08975-1

Cover

More Information
Summary:Objectives To further reduce the contrast medium (CM) dose of full aortic CT angiography (ACTA) imaging using the augmented cycle-consistent adversarial framework (Au-CycleGAN) algorithm. Methods We prospectively enrolled 150 consecutive patients with suspected aortic disease. All received ACTA scans of ultra-low-dose CM (ULDCM) protocol and low-dose CM (LDCM) protocol. These data were randomly assigned to the training datasets ( n = 100) and the validation datasets ( n = 50). The ULDCM images were reconstructed by the Au-CycleGAN algorithm. Then, the AI-based ULDCM images were compared with LDCM images in terms of image quality and diagnostic accuracy. Results The mean image quality score of each location in the AI-based ULDCM group was higher than that in the ULDCM group but a little lower than that in the LDCM group (all p < 0.05). All AI-based ULDCM images met the diagnostic requirements (score ≥ 3). Except for the image noise, the AI-based ULDCM images had higher attenuation value than the ULDCM and LDCM images as well as higher SNR and CNR in all locations of the aorta analyzed (all p < 0.05). Similar results were also seen in obese patients (BMI > 25, all p < 0.05). Using the findings of LDCM images as the reference, the AI-based ULDCM images showed good diagnostic parameters and no significant differences in any of the analyzed aortic disease diagnoses (all K -values > 0.80, p < 0.05). Conclusions The required dose of CM for full ACTA imaging can be reduced to one-third of the CM dose of the LDCM protocol while maintaining image quality and diagnostic accuracy using the Au-CycleGAN algorithm. Key Points • The required dose of contrast medium (CM) for full ACTA imaging can be reduced to one-third of the CM dose of the low-dose contrast medium (LDCM) protocol using the Au-CycleGAN algorithm. • Except for the image noise, the AI-based ultra-low-dose contrast medium (ULDCM) images had better quantitative image quality parameters than the ULDCM and LDCM images. • No significant diagnostic differences were noted between the AI-based ULDCM and LDCM images regarding all the analyzed aortic disease diagnoses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1432-1084
0938-7994
1432-1084
DOI:10.1007/s00330-022-08975-1