Robust anisotropic Gaussian fitting for volumetric characterization of Pulmonary nodules in multislice CT
This paper proposes a robust statistical estimation and verification framework for characterizing the ellipsoidal (anisotropic) geometrical structure of pulmonary nodules in the Multislice X-ray computed tomography (CT) images. Given a marker indicating a rough location of a target, the proposed sol...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 24; no. 3; pp. 409 - 423 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X |
| DOI | 10.1109/TMI.2004.843172 |
Cover
| Summary: | This paper proposes a robust statistical estimation and verification framework for characterizing the ellipsoidal (anisotropic) geometrical structure of pulmonary nodules in the Multislice X-ray computed tomography (CT) images. Given a marker indicating a rough location of a target, the proposed solution estimates the target's center location, ellipsoidal boundary approximation, volume, maximum/average diameters, and isotropy by robustly and efficiently fitting an anisotropic Gaussian intensity model. We propose a novel multiscale joint segmentation and model fitting solution which extends the robust mean shift-based analysis to the linear scale-space theory. The design is motivated for enhancing the robustness against margin-truncation induced by neighboring structures, data with large deviations from the chosen model, and marker location variability. A chi-square-based statistical verification and analytical volumetric measurement solutions are also proposed to complement this estimation framework. Experiments with synthetic one-dimensional and two-dimensional data clearly demonstrate the advantage of our solution in comparison with the /spl gamma/-normalized Laplacian approach (Linderberg, 1998) and the standard sample estimation approach (Matei, 2001). A quasi-real-time three-dimensional nodule characterization system is developed using this framework and validated with two clinical data sets of thin-section chest CT images. Our experiments with 1310 nodules resulted in 1) robustness against intraoperator and interoperator variability due to varying marker locations, 2) 81% correct estimation rate, 3) 3% false acceptance and 5% false rejection rates, and 4) correct characterization of clinically significant nonsolid ground-glass opacity nodules. This system processes each 33-voxel volume-of-interest by an average of 2 s with a 2.4-GHz Intel CPU. Our solution is generic and can be applied for the analysis of blob-like structures in various other applications. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 0278-0062 1558-254X |
| DOI: | 10.1109/TMI.2004.843172 |