Refining Integration-by-Parts Reduction of Feynman Integrals with Machine Learning

A bstract Integration-by-parts reductions of Feynman integrals pose a frequent bottleneck in state-of-the-art calculations in theoretical particle and gravitational-wave physics, and rely on heuristic approaches for selecting integration-by-parts identities, whose quality heavily influences the perf...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2025; no. 5; pp. 185 - 26
Main Authors von Hippel, Matt, Wilhelm, Matthias
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 21.05.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP05(2025)185

Cover

More Information
Summary:A bstract Integration-by-parts reductions of Feynman integrals pose a frequent bottleneck in state-of-the-art calculations in theoretical particle and gravitational-wave physics, and rely on heuristic approaches for selecting integration-by-parts identities, whose quality heavily influences the performance. In this paper, we investigate the use of machine-learning techniques to find improved heuristics. We use funsearch, a genetic programming variant based on code generation by a Large Language Model, in order to explore possible approaches, then use strongly typed genetic programming to zero in on useful solutions. Both approaches manage to re-discover the state-of-the-art heuristics recently incorporated into integration-by-parts solvers, and in one example find a small advance on this state of the art.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1126-6708
1127-2236
1029-8479
DOI:10.1007/JHEP05(2025)185