Biocompatible Material‐Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems

Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personaliz...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 27; pp. e2207879 - n/a
Main Authors Liu, Gang, Lv, Ziyu, Batool, Saima, Li, Ming‐Zheng, Zhao, Pengfei, Guo, Liangchao, Wang, Yan, Zhou, Ye, Han, Su‐Ting
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202207879

Cover

Abstract Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material‐to‐device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in‐sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered. Flexible biosensors (pressure, optical, temperature, and electrochemical sensors) prepared from various biocompatible materials have the capability to monitor physiological signals such as heart rate, temperature, and body fluid markers. Sophisticated wearable/implantable sensors and systems for optimizing every aspect of the personal health and performance can be achieved through rational design of functional material and device architecture, as well as the use of advanced processing/integration approaches.
AbstractList Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material‐to‐device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in‐sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered. Flexible biosensors (pressure, optical, temperature, and electrochemical sensors) prepared from various biocompatible materials have the capability to monitor physiological signals such as heart rate, temperature, and body fluid markers. Sophisticated wearable/implantable sensors and systems for optimizing every aspect of the personal health and performance can be achieved through rational design of functional material and device architecture, as well as the use of advanced processing/integration approaches.
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Author Liu, Gang
Li, Ming‐Zheng
Lv, Ziyu
Zhao, Pengfei
Zhou, Ye
Han, Su‐Ting
Guo, Liangchao
Batool, Saima
Wang, Yan
Author_xml – sequence: 1
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  organization: Shenzhen University
– sequence: 2
  givenname: Ziyu
  surname: Lv
  fullname: Lv, Ziyu
  email: lvziyu@szu.edu.cn
  organization: Shenzhen University
– sequence: 3
  givenname: Saima
  surname: Batool
  fullname: Batool, Saima
  organization: Shenzhen University
– sequence: 4
  givenname: Ming‐Zheng
  surname: Li
  fullname: Li, Ming‐Zheng
  organization: MGI Tech Co., Ltd
– sequence: 5
  givenname: Pengfei
  surname: Zhao
  fullname: Zhao, Pengfei
  organization: Shenzhen University
– sequence: 6
  givenname: Liangchao
  surname: Guo
  fullname: Guo, Liangchao
  organization: Yangzhou University
– sequence: 7
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Hefei University of Technology
– sequence: 8
  givenname: Ye
  surname: Zhou
  fullname: Zhou, Ye
  organization: Shenzhen University
– sequence: 9
  givenname: Su‐Ting
  orcidid: 0000-0003-3392-7569
  surname: Han
  fullname: Han, Su‐Ting
  email: sutinghan@szu.edu.cn
  organization: Shenzhen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37009995$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi3Uin7AlSOyxIVLUq-9Xq-50ZbQSKk4BMTRcuzZyJXXDvYGyK1HjvxGfglO06ZSJcRpRprneTWaOUEHIQZA6FVFxhUh9Cz33o8poZSIVshn6LhqKjZqWioP9n1FjtBJzjeEsIrW4jk6YoIQKSU_Rr_OXTSxX-nBLTzgaz1Actr_uf19rjNYPPHw825SuAwhx5Tf4UmK_R7N-BKyWwY8RPwVdNKFPpv2K6_DsO3L-LszkLEOFk_DAMtUTIvnJc2FJZ5v8gB9foEOuxIGL-_rKfoy-fD54mo0-_RxevF-NjJMMDlii1Y3nLSGt9DwRnDdci6Y7Sy1jQVGjDa8ZrXuFkxWDe0s0QYM6VpjBdPATtHbXe4qxW9ryIPqXTbgy7oQ11lRIetGMlG1BX3zBL2J6xTKdoq2jBaIsy31-p5aL3qwapVcr9NGPdy4APUOMCnmnKBTxg3l3jEMSTuvKqK2r1TbV6r9K4s2fqI9JP9TkDvhh_Ow-Q-t5tez2aP7F7OKtGU
CitedBy_id crossref_primary_10_1021_acsaem_4c00993
crossref_primary_10_1002_EXP_20220167
crossref_primary_10_1021_acsaelm_3c01409
crossref_primary_10_3390_gels10080498
crossref_primary_10_1021_acsmeasuresciau_3c00034
crossref_primary_10_1016_j_cej_2024_156884
crossref_primary_10_1039_D4CS00220B
crossref_primary_10_1016_j_cej_2024_152445
crossref_primary_10_1088_2631_8695_ad82a7
crossref_primary_10_1002_adfm_202424382
crossref_primary_10_1021_acs_chemrev_3c00392
crossref_primary_10_1021_acsnano_4c18846
crossref_primary_10_1002_adom_202400702
crossref_primary_10_1039_D3MH02013D
crossref_primary_10_1002_inf2_12508
crossref_primary_10_1002_adsr_202300137
crossref_primary_10_1002_smll_202409711
crossref_primary_10_1016_j_cej_2024_153684
crossref_primary_10_1021_acsnano_3c11832
crossref_primary_10_1002_adfm_202416419
crossref_primary_10_1002_adsr_202400018
crossref_primary_10_3390_s24165143
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1039_D4TC00894D
crossref_primary_10_1002_adfm_202422778
crossref_primary_10_1007_s40843_024_3238_4
crossref_primary_10_1002_admt_202400849
crossref_primary_10_1016_j_memori_2024_100102
crossref_primary_10_3390_bioengineering11080817
crossref_primary_10_1039_D3TC03611A
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1039_D3NR06099C
crossref_primary_10_1016_j_colsurfa_2024_133672
crossref_primary_10_1016_j_biomaterials_2024_122862
crossref_primary_10_3390_s24072180
crossref_primary_10_1021_acsanm_4c04527
crossref_primary_10_1016_j_diamond_2024_111724
crossref_primary_10_1002_admt_202300404
crossref_primary_10_1002_smll_202310110
crossref_primary_10_3390_bioengineering11040358
crossref_primary_10_1021_acssensors_3c01384
crossref_primary_10_1039_D4TA03076A
crossref_primary_10_1088_1674_4926_24100003
crossref_primary_10_1007_s00339_024_07444_4
crossref_primary_10_1088_2631_7990_ad65a0
crossref_primary_10_1002_adhm_202401532
crossref_primary_10_3390_ma17030668
crossref_primary_10_1002_adma_202411659
crossref_primary_10_1039_D4AN00665H
crossref_primary_10_1002_adfm_202413324
crossref_primary_10_1109_JSEN_2023_3345405
crossref_primary_10_1016_j_bios_2025_117133
crossref_primary_10_1016_j_biotechadv_2023_108297
crossref_primary_10_1016_j_cej_2025_160213
crossref_primary_10_1002_adfm_202405231
crossref_primary_10_1038_s41378_025_00891_w
Cites_doi 10.1002/adhm.201800275
10.1002/adfm.201910547
10.1038/s41578-022-00460-x
10.1038/s41928-020-00501-9
10.1073/pnas.1718721115
10.1016/j.talanta.2020.121153
10.1002/adfm.201500856
10.1002/smtd.202100771
10.1021/acs.nanolett.9b02014
10.1002/adfm.200601239
10.1002/adsu.202000056
10.1002/adom.202002206
10.1002/aelm.202100753
10.1038/s41578-022-00427-y
10.1038/s41467-020-18503-8
10.1016/j.bios.2019.111617
10.3390/s20143953
10.1161/CIRCULATIONAHA.116.025037
10.1038/am.2017.189
10.1038/s41928-018-0041-0
10.1016/S0140-6736(21)00684-X
10.1016/j.addma.2021.102088
10.1021/acssensors.0c00604
10.1126/science.aah4496
10.1038/s41378-020-00208-z
10.1002/adma.202109357
10.1002/adma.201300794
10.1002/adma.202008539
10.1021/acs.nanolett.7b04184
10.1002/adhm.202100460
10.1126/science.1167130
10.1002/aisy.202000159
10.1126/sciadv.1601314
10.3390/s151128889
10.1126/sciadv.aaw7846
10.1021/acsami.1c15636
10.1016/j.cej.2021.131171
10.1038/s41467-020-20803-y
10.1002/adma.202201608
10.3390/nano11071854
10.1038/s41551-017-0154-1
10.1002/adfm.201910292
10.1016/j.matt.2021.09.012
10.1002/adfm.201805754
10.1109/JPROC.2019.2930808
10.1126/science.aao0098
10.1002/adma.201905527
10.1038/nature16521
10.1021/acssensors.9b00891
10.1073/pnas.0401918101
10.1371/journal.pone.0038436
10.1126/science.1182383
10.1126/sciadv.aaz6767
10.1002/smll.201801657
10.1126/sciadv.1601966
10.1021/cg0704753
10.3390/s20195701
10.1002/smll.202000472
10.3389/fphys.2016.00071
10.1002/adma.201505739
10.1002/adhm.201700024
10.1002/adma.201808138
10.1021/acs.chemrev.8b00016
10.1021/acs.chemrev.0c01177
10.1002/adma.202108607
10.3390/mi12070810
10.1002/adfm.202006612
10.1021/acssensors.2c00787
10.1002/adfm.201605657
10.1021/acs.nanolett.9b02978
10.1021/acssensors.1c01614
10.1002/adma.201504245
10.1002/anie.201209676
10.1002/aelm.202000944
10.1038/s41586-018-0390-x
10.1002/aelm.202100591
10.3390/s22051996
10.1038/nmat2834
10.1016/j.jallcom.2019.05.145
10.1088/1361-6528/aaa855
10.1002/adom.202001693
10.1016/j.isci.2020.101966
10.1021/acsnano.0c09015
10.1002/adma.202102332
10.1063/1.2416001
10.1021/acssensors.2c00830
10.1016/j.sna.2020.112144
10.1038/s41586-019-1493-8
10.1021/acsami.7b04687
10.1021/acssensors.1c00281
10.1016/j.nanoen.2021.106282
10.1016/j.neuron.2016.12.031
10.1038/s41467-018-06879-7
10.1038/s41467-021-27066-1
10.1016/j.jneumeth.2014.07.025
10.1039/C8TB01063C
10.1016/j.nanoen.2021.106031
10.1002/adma.201605056
10.1016/j.nanoen.2014.11.034
10.1016/j.snb.2020.128936
10.1016/j.scib.2021.09.014
10.1021/acs.chemmater.7b00181
10.1016/j.jallcom.2021.160954
10.1038/s41551-018-0194-1
10.1038/s41563-020-0638-3
10.1038/s41586-021-03251-6
10.1002/adfm.201701117
10.1002/adfm.201001031
10.1002/adhm.201800074
10.1016/j.nanoen.2018.05.014
10.1038/nprot.2016.155
10.1016/j.nanoen.2019.05.019
10.1016/j.nanoen.2018.05.020
10.1038/s41551-021-00719-8
10.1038/s41467-021-25719-9
10.1002/adma.201703787
10.1038/nmat4290
10.1021/sc500161b
10.1016/j.progpolymsci.2021.101474
10.1002/adma.202202622
10.1002/slct.201601043
10.1002/adfm.202111747
10.1016/j.compositesb.2021.108621
10.1038/nnano.2006.131
10.1016/j.aca.2021.338643
10.1002/advs.202104404
10.1038/s41427-022-00357-9
10.1038/ncomms5007
10.3390/s21217172
10.1021/acsanm.1c00858
10.1038/s41551-022-00916-z
10.1038/s41467-020-14439-1
10.3390/molecules25132970
10.1002/adma.202004115
10.1038/nmat3064
10.1002/adfm.201001397
10.1021/acsami.8b19425
10.1038/nature20102
10.1021/acssensors.6b00356
10.1016/j.nanoen.2021.106611
10.1088/2058-8585/1/2/023002
10.1038/s41587-019-0321-x
10.1002/tcr.202000114
10.1038/s41551-017-0051
10.2109/jcersj2.15316
10.1002/adma.201400334
10.1002/aelm.202000641
10.1021/acsnano.8b06492
10.1002/inf2.12047
10.1002/adma.201801072
10.1038/nmat2879
10.1021/acs.chemrev.8b00599
10.1016/j.snb.2018.02.060
10.1038/s41467-021-22047-w
10.1002/adfm.202109046
10.1021/nl200758b
10.1002/adma.202200682
10.1016/j.carbon.2018.11.008
10.1038/s41928-021-00556-2
10.1039/D0LC01007C
10.1039/C8EE01468J
10.1002/adma.201603143
10.1016/j.tibtech.2014.04.005
10.1016/j.bspc.2021.103017
10.1038/s41586-018-0823-6
10.1007/s00339-022-05320-7
10.1088/1361-665X/aac0b8
10.1002/smll.202103125
10.1038/s41467-021-26314-8
10.1063/1.1854192
10.1073/pnas.1909532117
10.1002/adfm.201805599
10.1002/admt.202200010
10.1021/acsnano.5b05313
10.1126/sciadv.abm7851
10.1021/cr400625j
10.1039/C8CC07527A
10.1038/s41467-019-09851-1
10.1063/1.3099052
10.1002/adhm.202002255
10.1002/adma.202105306
10.1126/sciadv.abg2507
10.1038/s41928-018-0043-y
10.1038/ncomms6028
10.1038/s41563-020-0703-y
10.1002/anie.202006402
10.1016/j.bios.2021.113265
10.1021/acs.analchem.1c05309
10.1038/s41467-022-29087-w
10.1021/acsami.9b20785
10.1002/adma.201503682
10.1016/j.nanoen.2015.01.004
10.1039/C6TA03146C
10.1002/adfm.202203585
10.1002/adma.201501810
10.1002/adma.201200359
10.1002/aelm.201500159
10.1002/adma.201302435
10.1039/D0MH01818J
10.1097/00002480-200209000-00017
10.1039/D0NR05486K
10.1002/adfm.202008006
10.1002/adfm.201701269
10.1016/j.nanoen.2020.105648
10.1016/j.carbon.2015.09.108
10.1126/science.aau0780
10.1038/s41551-020-0518-9
10.1002/adma.201104672
10.1002/adma.201907288
10.1039/C9TC00961B
10.3390/bios11040126
10.1126/sciadv.abg9614
10.1021/acsnano.9b07165
10.1126/sciadv.aar3921
10.1007/s11664-011-1834-3
10.3390/s22020630
10.1016/j.apmt.2020.100699
10.1063/1.4921039
10.1126/science.1260318
10.1039/c1cs90001c
10.1002/adma.201906989
10.1016/j.matt.2021.06.018
10.1002/adfm.201800110
10.1038/nmeth.f.324
10.1038/nature25494
10.1007/s12274-022-4122-z
10.1021/am100154e
10.1038/s41563-021-01093-1
10.1006/jasc.2001.0779
10.1016/j.bios.2020.112878
10.1021/acs.accounts.9b00347
10.1016/j.matt.2020.09.027
10.1039/C5EE01593F
10.1002/adma.201904765
10.1002/jccs.201100628
10.3390/s22062154
10.1038/s41467-018-07764-z
10.1021/acsnano.5b00599
10.1109/TBCAS.2018.2799623
10.1038/nmat3755
10.1002/adfm.201400712
10.1021/acs.nanolett.1c01039
10.1038/nn.2730
10.1016/j.nanoen.2020.104767
10.1016/j.mtener.2018.05.006
10.1002/adma.202006582
10.1002/adfm.202006273
10.1002/admt.201900728
10.1002/adhm.202100103
10.1126/sciadv.aav3097
10.1021/acsami.9b11774
10.1126/science.aaa9306
10.1002/aelm.202100178
10.1021/acsami.0c19621
10.1073/pnas.1705509114
10.1039/D1TA05586K
10.1021/acsami.5b02487
10.1021/acs.chemrev.1c00363
10.1016/j.bios.2020.112750
10.1016/j.nanoen.2022.107687
10.1038/s41586-021-03753-3
10.1038/s41524-022-00731-9
10.1016/j.nanoen.2021.106694
10.1016/j.bios.2019.04.034
10.3390/molecules25225288
10.1038/nbt.3093
10.1016/j.bios.2020.112828
10.1038/s41565-018-0226-8
10.1021/acsami.9b03261
10.1073/pnas.1802064115
10.1016/j.ijpx.2019.100023
10.1002/advs.201800496
10.1109/TIM.2014.2312512
10.1021/am404872j
10.1038/s41551-021-00833-7
10.3390/bios12040245
10.1038/s41563-020-0679-7
10.1002/adfm.202001296
10.1186/s11671-015-0748-z
10.1021/acs.accounts.5b00133
10.1016/j.nanoen.2019.104039
10.1021/ja0571592
10.3389/fchem.2019.00399
10.1002/adhm.202002236
10.1002/adma.202104958
10.1002/smll.202201111
10.1002/adma.201400633
10.1021/acsami.1c05291
10.1021/acssensors.9b01127
10.1038/natrevmats.2016.63
10.1002/adfm.201906713
10.1016/j.cej.2021.130921
10.1109/TBCAS.2018.2802443
10.1016/j.scib.2020.02.020
10.1021/acsmaterialslett.1c00246
10.1073/pnas.1909850116
10.1126/science.1157996
10.1002/admt.202101182
10.1073/pnas.1920073117
10.1021/acsami.0c10259
10.1038/ncomms2553
10.1038/nmat5045
10.1002/adfm.201501396
10.1002/aelm.202000780
10.1016/j.neuron.2016.06.034
10.1021/acsomega.9b03634
10.1007/s42114-021-00262-9
10.1007/s10570-021-04066-4
10.1021/acssuschemeng.7b01617
10.1002/aelm.202001084
10.1038/s41551-018-0300-4
10.1126/sciadv.aat0626
10.1038/ncomms14997
10.1007/s10971-011-2465-0
10.1038/s41563-019-0435-z
10.1002/adhm.202101548
10.1039/C6TC00387G
10.1016/j.cej.2021.132779
10.3390/s20174861
10.1126/sciadv.1600955
10.1002/aelm.201600356
10.1002/adma.201305182
10.1021/acsenergylett.8b00928
10.1016/j.cej.2019.01.005
10.1016/j.trac.2019.06.014
10.1109/JSEN.2005.846173
10.1002/adhm.202002280
10.1007/s00216-005-0069-7
10.1038/s41598-018-24502-z
10.1021/acsami.5b10160
10.1016/j.bios.2017.01.058
10.3390/electronics3020234
10.1039/D0NR08453K
10.1002/adfm.202105459
10.1002/adfm.200701216
10.1021/accountsmr.0c00021
10.1038/s41467-018-05238-w
10.1038/natrevmats.2016.93
10.1002/adom.201801521
10.1016/j.bios.2006.01.030
10.1002/anie.201709096
10.1002/adhm.202001916
10.1038/s41592-021-01238-9
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202207879
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37009995
10_1002_smll_202207879
SMLL202207879
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Guangdong Provincial Department of Science and Technology
  funderid: 2021A1515012569
– fundername: NTUT‐SZU Joint Research Program
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  funderid: JCYJ20210324095207020; RCYX20200714114524157; JCYJ20220818100206013; 20200804172625001
– fundername: National Natural Science Foundation of China
  funderid: 62122055; 62074104; 61974093; 62104154
– fundername: NTUT-SZU Joint Research Program
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ20220818100206013
– fundername: Guangdong Provincial Department of Science and Technology
  grantid: 2021A1515012569
– fundername: National Natural Science Foundation of China
  grantid: 61974093
– fundername: National Natural Science Foundation of China
  grantid: 62104154
– fundername: National Natural Science Foundation of China
  grantid: 62074104
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: RCYX20200714114524157
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: 20200804172625001
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ20210324095207020
– fundername: National Natural Science Foundation of China
  grantid: 62122055
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3739-3b8a6508c58e65675a85573dfd2d6de30cac5434afb39162fd0acec0f8cd73ae3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Sep 04 23:54:45 EDT 2025
Fri Jul 25 12:16:41 EDT 2025
Mon Jul 21 06:00:51 EDT 2025
Tue Jul 01 02:54:29 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Wed Jan 22 16:20:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords flexible biosensors
biocompatible materials
wearable/implantable devices
in-sensor computing
transistors
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-3b8a6508c58e65675a85573dfd2d6de30cac5434afb39162fd0acec0f8cd73ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3392-7569
PMID 37009995
PQID 2832937538
PQPubID 1046358
PageCount 43
ParticipantIDs proquest_miscellaneous_2794693718
proquest_journals_2832937538
pubmed_primary_37009995
crossref_citationtrail_10_1002_smll_202207879
crossref_primary_10_1002_smll_202207879
wiley_primary_10_1002_smll_202207879_SMLL202207879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009 2020 2013; 94 16 25
2016 2018; 1 17
2006 2018 2013; 1 4 4
2020; 20
2019; 11
2014 2010 2021; 5 9 590
2021; 328
2021 2021 2014; 11 397 63
2021 2021 2021 2021; 10 6 4 211
2014; 26
2017 2018; 5 9
2015 2016 2018 2019 2021 2020; 9 28 9 19 31 30
2018 2019 2021; 13 7 12
2021 2018 2022; 81 5 15
2019 2020; 11 65
2020; 12
2020; 11
2022; 22
2017 2017 2019 2018; 12 93 565 12
2018; 49
2020; 19
2022 2020 2013 2019; 22 31 5 797
2021 2022 2022; 13 430 14
2018; 8
2018; 3
2009 2019; 323 143
2020 2020 2021 2017; 32 20 13 8
2013; 2013
2018; 1
2017 2015 2011; 27 14 21
2013; 52
2019 2022; 31 92
2021 2021 2021; 121 33 11
2014; 14
2012; 24
2014 2013 2021; 114 12 21
2022 2021 2019 2022; 12 89 119 13
2020; 218
2019; 7
2021; 46
2018; 28
2019; 5
2010 2017 2021; 326 355 33
2019; 2
2018 2018; 9 11
2019; 1
2015; 244
2021 2018 2022 2017; 12 7 34 2
2022; 91
2011 2016; 14 91
2016; 96
2019 2011 2011; 13 59 40
2020; 32
2019 2021 2022; 4 33 7
2017; 135
2018; 27
2011; 8
2016; 4
2015; 350
2015 2021; 10 885
2022 2022; 34 32
2016; 7
2018 2014 2014 2018; 50 26 24 29
2016; 1
2005 2020; 86 19
2018 2022; 4 9
2020; 31
2021 2020 2018; 21 14 360
2007 2010; 17 2
2020; 30
2022; 7
2022; 8
2019 2021; 4 10
2016 2016 2020 2021; 4 10 6 21
2005; 5
2020; 25
2020; 312
2022 2022 2021 2021 2021; 34 34 10 12
2016; 28
2021 2022; 15 102
2018; 14
2014; 32
2022; 18
2019; 572
2017; 6
2015 2005 2008; 25 383 18
2017; 1
2022 2018; 125 3
2013; 25
2017; 3
2015; 347
2022 2022; 428 32
2015; 33
2019; 368
2011; 11
2011; 10
2008; 8
2012; 59
2014 2006; 3 89
2017; 9
2017 2021; 56 60
2019; 363
2020; 7
2015; 48
2020; 6
2020; 5
2020; 4
2014; 5
2020; 3
2015 2020; 9 32
2021; 31
2021 2021; 12 4
2019; 62
2020; 1
2014; 2
2021; 33
2019 2016; 31 28
2021; 596
2016 2010 2022; 2 9 128
2019 2022 2017 2018; 7 8 9 560
2016 2019; 28 11
2018 2021; 12 7
2017 2019; 3 5
2019; 116
2020 2022; 19 427
2019; 118
2020 2022; 38 6
2022 2022 2021 2017; 122 22 7 1
2006; 128
2022 2021; 7 66
2021; 9
2004; 101
2015; 1
2020 2019; 6 5
2021; 7
2015; 15
2022 2021; 6 24
2021; 6
2015; 14
2021; 1179
2021; 5
2021; 4
2019 2021; 107 8
2021; 3
2018 2019; 6 30
2018 2018; 115 18
2016; 529
2016; 124
2021 2021 2019 2020 2017; 17 21 119 53 27
2017; 29
2021; 185
2021 2021; 70 9
2015 2018 2006 2011 2018; 8 9 21 41 115
2019 2019 2022 2002; 31 65 7 48
2008; 321
2022 2019 2016 2020; 32 136 8 12
2015; 9
2015; 7
2019; 143
2020 2017 2019; 11 114 10
2021; 13
2015; 25
2021; 10
2021 2020 2020 2020; 28 5 7 30
2021; 12
2017 2017 2018; 27 91 2
2021 2021; 9 20
2020; 73
2021; 18
2021 2022 2016; 12 34 539
2020; 117
2021; 172
2021 2021 2021; 8 33 31
2021 2021 2017; 13 175 29
2018 2022; 262 34
2021; 174
2018 2021; 555 10
2022 2021; 7 85
2012; 7
2018; 54
2020 2015 2022 2021; 4 27 94 5
2018 2018; 1 7
2002 2010; 29 20
e_1_2_9_79_1
e_1_2_9_10_2
e_1_2_9_56_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_122_2
e_1_2_9_145_1
Won S. M. (e_1_2_9_1_4) 2021
e_1_2_9_168_1
e_1_2_9_79_2
e_1_2_9_18_1
e_1_2_9_79_3
e_1_2_9_183_1
e_1_2_9_79_4
e_1_2_9_160_2
e_1_2_9_160_1
e_1_2_9_60_3
e_1_2_9_60_2
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_83_2
e_1_2_9_204_2
e_1_2_9_6_3
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_2
e_1_2_9_157_1
e_1_2_9_68_2
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_11_3
e_1_2_9_11_2
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_144_2
e_1_2_9_11_4
Wang B. (e_1_2_9_178_1) 2022; 8
e_1_2_9_57_2
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_2
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_2
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_4
e_1_2_9_5_3
e_1_2_9_5_2
e_1_2_9_5_1
e_1_2_9_118_2
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_179_2
e_1_2_9_156_2
e_1_2_9_23_3
e_1_2_9_46_2
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_77_3
e_1_2_9_77_2
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_109_2
e_1_2_9_92_1
e_1_2_9_109_1
Zhang L. (e_1_2_9_99_1) 2021; 31
e_1_2_9_101_2
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_2
Hong S. (e_1_2_9_177_1) 2017; 27
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_16_4
e_1_2_9_16_3
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_66_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_2
e_1_2_9_159_2
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_8_2
e_1_2_9_136_1
e_1_2_9_151_2
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_151_3
e_1_2_9_174_1
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_78_1
e_1_2_9_93_3
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_3
e_1_2_9_100_2
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_123_2
e_1_2_9_146_2
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_78_5
e_1_2_9_17_1
e_1_2_9_78_4
e_1_2_9_184_1
e_1_2_9_78_3
e_1_2_9_184_2
e_1_2_9_17_3
e_1_2_9_17_2
Rasmussen S. C. (e_1_2_9_60_4) 2017; 1
e_1_2_9_161_1
e_1_2_9_17_4
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_3
e_1_2_9_158_3
e_1_2_9_112_2
e_1_2_9_158_2
e_1_2_9_112_1
e_1_2_9_158_4
e_1_2_9_7_4
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_7_3
e_1_2_9_112_4
e_1_2_9_173_3
e_1_2_9_207_2
e_1_2_9_150_2
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_207_4
e_1_2_9_173_2
e_1_2_9_207_3
e_1_2_9_29_2
e_1_2_9_29_1
e_1_2_9_207_5
e_1_2_9_150_1
e_1_2_9_29_3
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_98_3
e_1_2_9_52_4
e_1_2_9_52_3
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_103_4
e_1_2_9_103_3
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_14_3
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_87_3
e_1_2_9_200_2
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_2
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_102_6
e_1_2_9_102_5
e_1_2_9_102_4
e_1_2_9_102_3
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_38_2
e_1_2_9_140_2
e_1_2_9_15_2
e_1_2_9_163_2
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_88_2
El‐Sheikh M. A. (e_1_2_9_69_1) 2013; 2013
e_1_2_9_88_3
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_5
e_1_2_9_1_3
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_137_2
e_1_2_9_9_4
e_1_2_9_9_3
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_3
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_12_3
e_1_2_9_35_2
e_1_2_9_120_1
e_1_2_9_35_3
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_2
e_1_2_9_181_3
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_85_2
e_1_2_9_4_1
e_1_2_9_155_2
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_155_3
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_97_2
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_3
e_1_2_9_104_3
e_1_2_9_104_2
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_188_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_180_2
e_1_2_9_63_2
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_4
e_1_2_9_3_3
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_177_3
e_1_2_9_154_2
e_1_2_9_116_1
e_1_2_9_177_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_25_1
e_1_2_9_48_3
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_25_3
e_1_2_9_48_1
e_1_2_9_48_4
e_1_2_9_192_1
References_xml – volume: 11
  start-page: 805
  year: 2020
  publication-title: Nat. Commun.
– volume: 19 427
  start-page: 590
  year: 2020 2022
  publication-title: Nat. Mater. Chem. Eng. J.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 31 28
  start-page: 4184
  year: 2019 2016
  publication-title: Adv. Mater. Adv. Mater.
– volume: 8
  start-page: 507
  year: 2008
  publication-title: Cryst. Growth Des.
– volume: 7
  year: 2012
  publication-title: PLoS One
– volume: 12
  start-page: 5979
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 569
  year: 2011
  publication-title: Nat. Mater.
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 1 4 4
  start-page: 201 1543
  year: 2006 2018 2013
  publication-title: Nat. Nanotechnol. Sci. Adv. Nat. Commun.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 25
  start-page: 2970
  year: 2020
  publication-title: Molecules
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 5028
  year: 2014
  publication-title: Nat. Commun.
– volume: 14
  start-page: 643
  year: 2015
  publication-title: Nat. Mater.
– volume: 86 19
  start-page: 13
  year: 2005 2020
  publication-title: Appl. Phys. Lett. Nat. Mater.
– volume: 12 4
  start-page: 6755 3725
  year: 2021 2021
  publication-title: Nat. Commun. Matter
– volume: 22
  start-page: 2154
  year: 2022
  publication-title: Sensors
– volume: 117
  start-page: 2835
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38 6
  start-page: 217 1225
  year: 2020 2022
  publication-title: Nat. Biotechnol. Nat. Biomed. Eng.
– volume: 13 430 14
  start-page: 11
  year: 2021 2022 2022
  publication-title: ACS Appl. Mater. Interfaces Chem. Eng. J. NPG Asia Mater.
– volume: 9 28 9 19 31 30
  start-page: 5929 2601 2786 6087
  year: 2015 2016 2018 2019 2021 2020
  publication-title: ACS Nano Adv. Mater. Nat. Commun. Nano Lett. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 326 355 33
  start-page: 1603 59
  year: 2010 2017 2021
  publication-title: Science Science Adv. Mater.
– volume: 128
  start-page: 1723
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 6796
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 32 20 13 8
  start-page: 5701 2062
  year: 2020 2020 2021 2017
  publication-title: Adv. Mater. Sensors ACS Appl. Mater. Interf. Nat. Commun.
– volume: 124
  start-page: 653
  year: 2016
  publication-title: J. Ceram. Soc. Jpn.
– volume: 14
  start-page: 161
  year: 2014
  publication-title: Nano Energy
– volume: 2 9 128
  start-page: 859 214
  year: 2016 2010 2022
  publication-title: Adv. Electron. Mater. Nat. Mater. Appl. Phys. A
– volume: 347
  start-page: 159
  year: 2015
  publication-title: Science
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 262 34
  start-page: 771
  year: 2018 2022
  publication-title: Sens. Actuators, B Adv. Mater.
– volume: 6
  start-page: 100
  year: 2020
  publication-title: Microsyst Nanoeng.
– volume: 34 32
  year: 2022 2022
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 8
  start-page: 50
  year: 2022
  publication-title: npj Comput. Mater.
– volume: 81 5 15
  start-page: 5418
  year: 2021 2018 2022
  publication-title: Nano Energy Adv. Sci. Nano Res.
– volume: 20
  start-page: 4861
  year: 2020
  publication-title: Sensors
– volume: 1
  year: 2016
  publication-title: Flexible Printed Electron.
– volume: 28 11
  start-page: 1420
  year: 2016 2019
  publication-title: Adv. Mater. ACS Appl. Mater. Interf.
– volume: 33
  start-page: 277
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 1
  start-page: 146
  year: 2020
  publication-title: Acc Mater Res
– volume: 1
  start-page: 0051
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 4 10
  start-page: 2196
  year: 2019 2021
  publication-title: ACS Sens. Adv. Healthcare Mater.
– volume: 1 7
  start-page: 183
  year: 2018 2018
  publication-title: Nat. Electron. Adv. Healthcare Mater.
– volume: 172
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 24
  start-page: 1805
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 26
  year: 2011
  publication-title: Nat. Methods
– volume: 4 27 94 5
  start-page: 7620 3320
  year: 2020 2015 2022 2021
  publication-title: Adv. Sustainable Syst. Adv. Mater. Anal. Chem. Small Methods
– volume: 10 885
  start-page: 27
  year: 2015 2021
  publication-title: Nanoscale Res. Lett. J. Alloys Compd.
– volume: 8
  start-page: 5965
  year: 2018
  publication-title: Sci. Rep.
– volume: 62
  start-page: 329
  year: 2019
  publication-title: Nano Energy
– volume: 8 9 21 41 115
  start-page: 2677 5349 2015 984 6632
  year: 2015 2018 2006 2011 2018
  publication-title: Energy Environ. Sci. Nat. Commun. Biosens. Bioelectron. J. Electron. Mater. Proc. Natl. Acad. Sci. USA
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 12 34 539
  start-page: 5701 411
  year: 2021 2022 2016
  publication-title: Nat. Commun. Adv. Mater. Nature
– volume: 26
  start-page: 6307
  year: 2014
  publication-title: Adv. Mater.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 363
  year: 2019
  publication-title: Science
– volume: 328
  year: 2021
  publication-title: Sens. Actuators, B
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 27 91 2
  start-page: 885 151
  year: 2017 2017 2018
  publication-title: Adv. Funct. Mater. Biosens. Bioelectron. Nat. Biomed. Eng.
– volume: 9 32
  start-page: 5929
  year: 2015 2020
  publication-title: ACS Nano Adv. Mater.
– volume: 5
  start-page: 1804
  year: 2020
  publication-title: ACS Sens.
– volume: 70 9
  year: 2021 2021
  publication-title: Biomed. Signal Process. Control Adv. Opt. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interf.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 20
  start-page: 3953
  year: 2020
  publication-title: Sensors
– volume: 25 383 18
  start-page: 3806 1009 1097
  year: 2015 2005 2008
  publication-title: Adv. Funct. Mater. Anal. Bioanal. Chem. Adv. Funct. Mater.
– volume: 19
  start-page: 969
  year: 2020
  publication-title: Nat. Mater.
– volume: 1
  start-page: 862
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 11 114 10
  start-page: 4683 5894 1821
  year: 2020 2017 2019
  publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA Nat. Commun.
– volume: 17 2
  start-page: 3538 1637
  year: 2007 2010
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interf.
– volume: 3
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 46
  year: 2021
  publication-title: Addit. Manuf.
– volume: 31 92
  year: 2019 2022
  publication-title: Adv. Mater. Nano Energy
– volume: 9
  year: 2015
  publication-title: Biomicrofluidics
– volume: 34 34 10 12
  start-page: 535
  year: 2022 2022 2021 2021 2021
  publication-title: Adv. Mater. Adv. Mater. Adv. Healthcare Mater. Nat. Biomed. Eng. Nat. Commun.
– volume: 32 136 8 12
  start-page: 91 1951 4797
  year: 2022 2019 2016 2020
  publication-title: Adv. Funct. Mater. Biosens. Bioelectron. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interf.
– volume: 28 5 7 30
  start-page: 9227 1919
  year: 2021 2020 2020 2020
  publication-title: Cellulose ACS Omega Adv. Electron. Mater. Adv. Funct. Mater.
– volume: 323 143
  start-page: 610 63
  year: 2009 2019
  publication-title: Science Carbon
– volume: 218
  year: 2020
  publication-title: Talanta
– volume: 4 9
  year: 2018 2022
  publication-title: Sci. Adv. Adv. Sci.
– volume: 3
  start-page: 1981
  year: 2020
  publication-title: Matter
– volume: 24
  start-page: 3326
  year: 2012
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1112
  year: 2021
  publication-title: Nat. Methods
– volume: 4
  start-page: 9381
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10 6 4 211
  start-page: 1918 302
  year: 2021 2021 2021 2021
  publication-title: Adv. Healthcare Mater. ACS Sens. Nat. Electron. Composites, Part B
– volume: 4
  start-page: 2613
  year: 2021
  publication-title: Matter
– volume: 12 93 565 12
  start-page: 219 509 361 521
  year: 2017 2017 2019 2018
  publication-title: Nat. Protoc. Neuron Nature IEEE Trans Biomed Circuits Syst
– volume: 56 60
  year: 2017 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 12 7
  start-page: 257
  year: 2018 2021
  publication-title: IEEE Trans Biomed Circuits Syst Sci. Adv.
– volume: 7
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 15
  year: 2015
  publication-title: Sensors
– volume: 572
  start-page: 595
  year: 2019
  publication-title: Nature
– volume: 48
  start-page: 2565
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 20
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 428 32
  year: 2022 2022
  publication-title: Chem. Eng. J. Adv. Funct. Mater.
– volume: 52
  start-page: 2925
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 5 9
  start-page: 8836 114
  year: 2017 2018
  publication-title: ACS Sustainable Chem. Eng. Mater. Today Energy
– volume: 25
  start-page: 5916
  year: 2013
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5288
  year: 2020
  publication-title: Molecules
– volume: 3
  start-page: 921
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 1
  year: 2019
  publication-title: Int J Pharm X
– volume: 13 175 29
  start-page: 2868
  year: 2021 2021 2017
  publication-title: Nanoscale Biosens. Bioelectron. Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 118
  start-page: 488
  year: 2019
  publication-title: TrAC, Trends Anal. Chem.
– volume: 596
  start-page: 519
  year: 2021
  publication-title: Nature
– volume: 25
  start-page: 3203
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 244
  start-page: 114
  year: 2015
  publication-title: J. Neurosci Methods
– volume: 7 66
  start-page: 2437
  year: 2022 2021
  publication-title: Adv. Mater. Technol. Sci. Bull.
– volume: 4
  start-page: 574
  year: 2021
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 6 24
  start-page: 276
  year: 2022 2021
  publication-title: Nat. Biomed. Eng. iScience
– volume: 13 59 40
  start-page: 2888 73 471
  year: 2019 2011 2011
  publication-title: ACS Nano J. Sol‐Gel Sci. Technol. Chem. Soc. Rev.
– volume: 13 7 12
  start-page: 1048 399 810
  year: 2018 2019 2021
  publication-title: Nat. Nanotechnol. Front Chem Micromachines
– volume: 20
  start-page: 66
  year: 2020
  publication-title: Nano Lett.
– volume: 49
  start-page: 655
  year: 2018
  publication-title: Nano Energy
– volume: 11 65
  start-page: 2317 899
  year: 2019 2020
  publication-title: ACS Appl. Mater. Interf. Sci. Bull.
– volume: 32
  start-page: 363
  year: 2014
  publication-title: Trends Biotechnol.
– volume: 6
  start-page: 4098
  year: 2021
  publication-title: ACS Sens.
– volume: 28
  start-page: 9512
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interf.
– volume: 22 31 5 797
  start-page: 1996 666
  year: 2022 2020 2013 2019
  publication-title: Sensors Adv. Funct. Mater. ACS Appl. Mater. Interf. J. Alloys Compd.
– volume: 107 8
  start-page: 2065 1037
  year: 2019 2021
  publication-title: Proc. IEEE Mater Horiz.
– volume: 15 102
  start-page: 2911
  year: 2021 2022
  publication-title: ACS Nano Nano Energy
– volume: 1 17
  start-page: 4326 180
  year: 2016 2018
  publication-title: ChemistrySelect Nat. Mater.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 27 14 21
  start-page: 87 772
  year: 2017 2015 2011
  publication-title: Adv. Funct. Mater. Nano Energy Adv. Funct. Mater.
– volume: 174
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 312
  year: 2020
  publication-title: Sens. Actuators, A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interf.
– volume: 2013
  year: 2013
  publication-title: J. Polym.
– volume: 5
  start-page: 772
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 115 18
  start-page: 326
  year: 2018 2018
  publication-title: Proc. Natl. Acad. Sci. USA Nano Lett.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11 397 63
  start-page: 126 2385 2620
  year: 2021 2021 2014
  publication-title: Biosensors Lancet IEEE Trans. Instrum. Meas.
– volume: 4 10 6 21
  start-page: 5289 436 795
  year: 2016 2016 2020 2021
  publication-title: J. Mater. Chem. C ACS Nano Adv. Electron. Mater. Lab Chip
– volume: 2
  start-page: 33
  year: 2019
  publication-title: InfoMat
– volume: 11
  start-page: 2396
  year: 2011
  publication-title: Nano Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 143
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 350
  start-page: 313
  year: 2015
  publication-title: Science
– volume: 27
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 9 20
  start-page: 1670
  year: 2021 2021
  publication-title: Adv. Opt. Mater. Nat. Mater.
– volume: 1
  start-page: 1011
  year: 2016
  publication-title: ACS Sens.
– volume: 50 26 24 29
  start-page: 79 3451 5427
  year: 2018 2014 2014 2018
  publication-title: Nano Energy Adv. Mater. Adv. Funct. Mater. Nanotechnology
– volume: 29
  start-page: 3126
  year: 2017
  publication-title: Chem. Mater.
– volume: 8 33 31
  year: 2021 2021 2021
  publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Funct. Mater.
– volume: 5 9 590
  start-page: 4007 929 410
  year: 2014 2010 2021
  publication-title: Nat. Commun. Nat. Mater. Nature
– volume: 368
  start-page: 223
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 29 20
  start-page: 1393 4069
  year: 2002 2010
  publication-title: J. Archaeol Sci Adv. Funct. Mater.
– volume: 31 65 7 48
  start-page: 850 538
  year: 2019 2019 2022 2002
  publication-title: Adv. Mater. Nano Energy Nat. Rev. Mater. ASAIO J.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 7 8 9 560
  start-page: 214
  year: 2019 2022 2017 2018
  publication-title: Adv. Opt. Mater. Sci. Adv. NPG Asia Mater. Nature
– volume: 2
  start-page: 1492
  year: 2014
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59
  start-page: 904
  year: 2012
  publication-title: J Chin Chem Soc
– volume: 17 21 119 53 27
  start-page: 1284 3 159
  year: 2021 2021 2019 2020 2017
  publication-title: Small Chem. Rec. Chem. Rev. Acc. Chem. Res. Adv. Funct. Mater.
– volume: 1179
  year: 2021
  publication-title: Anal. Chim. Acta
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 121 33 11
  start-page: 1854
  year: 2021 2021 2021
  publication-title: Chem. Rev. Adv. Mater. Nanomaterials
– volume: 125 3
  start-page: 1832
  year: 2022 2018
  publication-title: Prog. Polym. Sci. ACS Energy Lett.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 135
  start-page: 1458
  year: 2017
  publication-title: Circulation
– volume: 5
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 5
  start-page: 345
  year: 2005
  publication-title: IEEE Sens. J.
– volume: 4 33 7
  start-page: 1925 887
  year: 2019 2021 2022
  publication-title: ACS Sens. Adv. Mater. Nat. Rev. Mater.
– volume: 7
  start-page: 5193
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 12 7 34 2
  start-page: 1798
  year: 2021 2018 2022 2017
  publication-title: Nat. Commun. Adv. Healthcare Mater. Adv. Mater. Nat. Rev. Mater.
– volume: 19
  start-page: 679
  year: 2020
  publication-title: Nat. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interf.
– volume: 185
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 3 89
  start-page: 234
  year: 2014 2006
  publication-title: Electronics Appl. Phys. Lett.
– volume: 14 91
  start-page: 263 529
  year: 2011 2016
  publication-title: Nat. Neurosci. Neuron
– volume: 101
  start-page: 9966
  year: 2004
  publication-title: Proc Natl Acad Sci U S A.
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 7 85
  start-page: 2037
  year: 2022 2021
  publication-title: ACS Sens. Nano Energy
– volume: 1
  start-page: 160
  year: 2018
  publication-title: Nat. Electron.
– volume: 12 89 119 13
  start-page: 245 9303 1391
  year: 2022 2021 2019 2022
  publication-title: Biosensors Nano Energy Chem. Rev. Nat. Commun.
– volume: 21 14 360
  start-page: 7172 1390 998
  year: 2021 2020 2018
  publication-title: Sensors ACS Nano Science
– volume: 96
  start-page: 622
  year: 2016
  publication-title: Carbon
– volume: 6 30
  start-page: 4043
  year: 2018 2019
  publication-title: J. Mater. Chem. B Adv. Funct. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interf.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 6 5
  year: 2020 2019
  publication-title: Sci. Adv. Sci. Adv.
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electron.
– volume: 3 5
  year: 2017 2019
  publication-title: Sci. Adv. Sci. Adv.
– volume: 7
  start-page: 1996
  year: 2022
  publication-title: ACS Sens.
– volume: 114 12 21
  start-page: 938 7093
  year: 2014 2013 2021
  publication-title: Chem. Rev. Nat. Mater. Nano Lett.
– volume: 94 16 25
  start-page: 2707
  year: 2009 2020 2013
  publication-title: Appl. Phys. Lett. Small Adv. Mater.
– volume: 122 22 7 1
  start-page: 4552 630 99
  year: 2022 2022 2021 2017
  publication-title: Chem. Rev. Sensors Adv. Electron. Mater. Substantia
– volume: 555 10
  start-page: 83
  year: 2018 2021
  publication-title: Nature Adv. Healthcare Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 9 11
  start-page: 4480 3231
  year: 2018 2018
  publication-title: Nat. Commun. Energy Environ. Sci.
– volume: 3
  start-page: 37
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 4
  start-page: 207
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 7
  start-page: 71
  year: 2016
  publication-title: Front Physiol
– ident: e_1_2_9_11_2
  doi: 10.1002/adhm.201800275
– ident: e_1_2_9_170_1
  doi: 10.1002/adfm.201910547
– ident: e_1_2_9_173_3
  doi: 10.1038/s41578-022-00460-x
– ident: e_1_2_9_18_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_9_184_1
  doi: 10.1073/pnas.1718721115
– ident: e_1_2_9_64_1
  doi: 10.1016/j.talanta.2020.121153
– ident: e_1_2_9_111_1
  doi: 10.1002/adfm.201500856
– ident: e_1_2_9_5_4
  doi: 10.1002/smtd.202100771
– ident: e_1_2_9_102_4
  doi: 10.1021/acs.nanolett.9b02014
– ident: e_1_2_9_146_1
  doi: 10.1002/adfm.200601239
– ident: e_1_2_9_5_1
  doi: 10.1002/adsu.202000056
– ident: e_1_2_9_156_2
  doi: 10.1002/adom.202002206
– ident: e_1_2_9_50_1
  doi: 10.1002/aelm.202100753
– ident: e_1_2_9_3_3
  doi: 10.1038/s41578-022-00427-y
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-020-18503-8
– ident: e_1_2_9_152_1
  doi: 10.1016/j.bios.2019.111617
– ident: e_1_2_9_190_1
  doi: 10.3390/s20143953
– ident: e_1_2_9_191_1
  doi: 10.1161/CIRCULATIONAHA.116.025037
– ident: e_1_2_9_16_3
  doi: 10.1038/am.2017.189
– ident: e_1_2_9_163_1
  doi: 10.1038/s41928-018-0041-0
– ident: e_1_2_9_181_2
  doi: 10.1016/S0140-6736(21)00684-X
– ident: e_1_2_9_92_1
  doi: 10.1016/j.addma.2021.102088
– ident: e_1_2_9_132_1
  doi: 10.1021/acssensors.0c00604
– ident: e_1_2_9_98_2
  doi: 10.1126/science.aah4496
– ident: e_1_2_9_130_1
  doi: 10.1038/s41378-020-00208-z
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.202109357
– ident: e_1_2_9_29_3
  doi: 10.1002/adma.201300794
– ident: e_1_2_9_126_1
  doi: 10.1002/adma.202008539
– ident: e_1_2_9_184_2
  doi: 10.1021/acs.nanolett.7b04184
– ident: e_1_2_9_1_3
  doi: 10.1002/adhm.202100460
– ident: e_1_2_9_46_1
  doi: 10.1126/science.1167130
– ident: e_1_2_9_36_1
  doi: 10.1002/aisy.202000159
– ident: e_1_2_9_154_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_9_206_1
  doi: 10.3390/s151128889
– ident: e_1_2_9_154_2
  doi: 10.1126/sciadv.aaw7846
– ident: e_1_2_9_88_1
  doi: 10.1021/acsami.1c15636
– ident: e_1_2_9_109_1
  doi: 10.1016/j.cej.2021.131171
– ident: e_1_2_9_1_5
  doi: 10.1038/s41467-020-20803-y
– ident: e_1_2_9_1_2
  doi: 10.1002/adma.202201608
– ident: e_1_2_9_87_3
  doi: 10.3390/nano11071854
– ident: e_1_2_9_186_1
  doi: 10.1038/s41551-017-0154-1
– ident: e_1_2_9_7_4
  doi: 10.1002/adfm.201910292
– ident: e_1_2_9_122_2
  doi: 10.1016/j.matt.2021.09.012
– ident: e_1_2_9_172_1
  doi: 10.1002/adfm.201805754
– ident: e_1_2_9_159_1
  doi: 10.1109/JPROC.2019.2930808
– ident: e_1_2_9_14_3
  doi: 10.1126/science.aao0098
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201905527
– ident: e_1_2_9_145_1
  doi: 10.1038/nature16521
– ident: e_1_2_9_173_1
  doi: 10.1021/acssensors.9b00891
– ident: e_1_2_9_124_1
  doi: 10.1073/pnas.0401918101
– ident: e_1_2_9_208_1
  doi: 10.1371/journal.pone.0038436
– ident: e_1_2_9_98_1
  doi: 10.1126/science.1182383
– ident: e_1_2_9_85_1
  doi: 10.1126/sciadv.aaz6767
– ident: e_1_2_9_110_1
  doi: 10.1002/smll.201801657
– ident: e_1_2_9_194_1
  doi: 10.1126/sciadv.1601966
– ident: e_1_2_9_71_1
  doi: 10.1021/cg0704753
– ident: e_1_2_9_9_2
  doi: 10.3390/s20195701
– ident: e_1_2_9_29_2
  doi: 10.1002/smll.202000472
– ident: e_1_2_9_171_1
  doi: 10.3389/fphys.2016.00071
– ident: e_1_2_9_102_2
  doi: 10.1002/adma.201505739
– ident: e_1_2_9_131_1
  doi: 10.1002/adhm.201700024
– ident: e_1_2_9_150_1
  doi: 10.1002/adma.201808138
– ident: e_1_2_9_78_3
  doi: 10.1021/acs.chemrev.8b00016
– ident: e_1_2_9_87_1
  doi: 10.1021/acs.chemrev.0c01177
– ident: e_1_2_9_11_3
  doi: 10.1002/adma.202108607
– volume: 8
  year: 2022
  ident: e_1_2_9_178_1
  publication-title: Sci. Adv.
– ident: e_1_2_9_23_3
  doi: 10.3390/mi12070810
– ident: e_1_2_9_117_1
  doi: 10.1002/adfm.202006612
– ident: e_1_2_9_134_1
  doi: 10.1021/acssensors.2c00787
– ident: e_1_2_9_104_1
  doi: 10.1002/adfm.201605657
– ident: e_1_2_9_125_1
  doi: 10.1021/acs.nanolett.9b02978
– ident: e_1_2_9_142_1
  doi: 10.1021/acssensors.1c01614
– ident: e_1_2_9_38_2
  doi: 10.1002/adma.201504245
– ident: e_1_2_9_75_1
  doi: 10.1002/anie.201209676
– ident: e_1_2_9_7_3
  doi: 10.1002/aelm.202000944
– ident: e_1_2_9_16_4
  doi: 10.1038/s41586-018-0390-x
– ident: e_1_2_9_60_3
  doi: 10.1002/aelm.202100591
– ident: e_1_2_9_52_1
  doi: 10.3390/s22051996
– ident: e_1_2_9_100_2
  doi: 10.1038/nmat2834
– ident: e_1_2_9_52_4
  doi: 10.1016/j.jallcom.2019.05.145
– ident: e_1_2_9_103_4
  doi: 10.1088/1361-6528/aaa855
– ident: e_1_2_9_101_1
  doi: 10.1002/adom.202001693
– ident: e_1_2_9_8_2
  doi: 10.1016/j.isci.2020.101966
– ident: e_1_2_9_118_1
  doi: 10.1021/acsnano.0c09015
– ident: e_1_2_9_173_2
  doi: 10.1002/adma.202102332
– ident: e_1_2_9_123_2
  doi: 10.1063/1.2416001
– ident: e_1_2_9_140_1
  doi: 10.1021/acssensors.2c00830
– ident: e_1_2_9_165_1
  doi: 10.1016/j.sna.2020.112144
– ident: e_1_2_9_42_1
  doi: 10.1038/s41586-019-1493-8
– ident: e_1_2_9_106_1
  doi: 10.1021/acsami.7b04687
– ident: e_1_2_9_158_2
  doi: 10.1021/acssensors.1c00281
– ident: e_1_2_9_112_2
  doi: 10.1016/j.nanoen.2021.106282
– ident: e_1_2_9_17_2
  doi: 10.1016/j.neuron.2016.12.031
– ident: e_1_2_9_204_1
  doi: 10.1038/s41467-018-06879-7
– ident: e_1_2_9_122_1
  doi: 10.1038/s41467-021-27066-1
– ident: e_1_2_9_202_1
  doi: 10.1016/j.jneumeth.2014.07.025
– ident: e_1_2_9_2_1
  doi: 10.1039/C8TB01063C
– ident: e_1_2_9_140_2
  doi: 10.1016/j.nanoen.2021.106031
– ident: e_1_2_9_58_1
  doi: 10.1002/adma.201605056
– ident: e_1_2_9_116_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_9_149_1
  doi: 10.1016/j.snb.2020.128936
– ident: e_1_2_9_157_2
  doi: 10.1016/j.scib.2021.09.014
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.chemmater.7b00181
– ident: e_1_2_9_97_2
  doi: 10.1016/j.jallcom.2021.160954
– ident: e_1_2_9_177_3
  doi: 10.1038/s41551-018-0194-1
– ident: e_1_2_9_147_1
  doi: 10.1038/s41563-020-0638-3
– ident: e_1_2_9_151_3
  doi: 10.1038/s41586-021-03251-6
– ident: e_1_2_9_78_5
  doi: 10.1002/adfm.201701117
– ident: e_1_2_9_68_2
  doi: 10.1002/adfm.201001031
– ident: e_1_2_9_163_2
  doi: 10.1002/adhm.201800074
– ident: e_1_2_9_114_1
  doi: 10.1016/j.nanoen.2018.05.014
– ident: e_1_2_9_17_1
  doi: 10.1038/nprot.2016.155
– ident: e_1_2_9_55_1
  doi: 10.1016/j.nanoen.2019.05.019
– ident: e_1_2_9_103_1
  doi: 10.1016/j.nanoen.2018.05.020
– ident: e_1_2_9_183_1
  doi: 10.1038/s41551-021-00719-8
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-021-25719-9
– ident: e_1_2_9_77_3
  doi: 10.1002/adma.201703787
– ident: e_1_2_9_187_1
  doi: 10.1038/nmat4290
– ident: e_1_2_9_73_1
  doi: 10.1021/sc500161b
– ident: e_1_2_9_63_1
  doi: 10.1016/j.progpolymsci.2021.101474
– ident: e_1_2_9_180_1
  doi: 10.1002/adma.202202622
– ident: e_1_2_9_83_1
  doi: 10.1002/slct.201601043
– ident: e_1_2_9_109_2
  doi: 10.1002/adfm.202111747
– ident: e_1_2_9_158_4
  doi: 10.1016/j.compositesb.2021.108621
– ident: e_1_2_9_188_1
  doi: 10.1038/nnano.2006.131
– ident: e_1_2_9_21_1
  doi: 10.1016/j.aca.2021.338643
– ident: e_1_2_9_66_2
  doi: 10.1002/advs.202104404
– ident: e_1_2_9_88_3
  doi: 10.1038/s41427-022-00357-9
– ident: e_1_2_9_151_1
  doi: 10.1038/ncomms5007
– ident: e_1_2_9_14_1
  doi: 10.3390/s21217172
– ident: e_1_2_9_168_1
  doi: 10.1021/acsanm.1c00858
– ident: e_1_2_9_137_2
  doi: 10.1038/s41551-022-00916-z
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-020-14439-1
– ident: e_1_2_9_128_1
  doi: 10.3390/molecules25132970
– ident: e_1_2_9_50_2
  doi: 10.1002/adma.202004115
– ident: e_1_2_9_45_1
  doi: 10.1038/nmat3064
– ident: e_1_2_9_104_3
  doi: 10.1002/adfm.201001397
– ident: e_1_2_9_160_1
  doi: 10.1021/acsami.8b19425
– ident: e_1_2_9_6_3
  doi: 10.1038/nature20102
– ident: e_1_2_9_139_1
  doi: 10.1021/acssensors.6b00356
– ident: e_1_2_9_164_1
  doi: 10.1016/j.nanoen.2021.106611
– ident: e_1_2_9_176_1
  doi: 10.1088/2058-8585/1/2/023002
– ident: e_1_2_9_137_1
  doi: 10.1038/s41587-019-0321-x
– ident: e_1_2_9_78_2
  doi: 10.1002/tcr.202000114
– ident: e_1_2_9_203_1
  doi: 10.1038/s41551-017-0051
– ident: e_1_2_9_53_1
  doi: 10.2109/jcersj2.15316
– ident: e_1_2_9_89_1
  doi: 10.1002/adma.201400334
– ident: e_1_2_9_79_3
  doi: 10.1002/aelm.202000641
– ident: e_1_2_9_93_1
  doi: 10.1021/acsnano.8b06492
– ident: e_1_2_9_95_1
  doi: 10.1002/inf2.12047
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201801072
– ident: e_1_2_9_151_2
  doi: 10.1038/nmat2879
– ident: e_1_2_9_112_3
  doi: 10.1021/acs.chemrev.8b00599
– ident: e_1_2_9_56_1
  doi: 10.1016/j.snb.2018.02.060
– ident: e_1_2_9_11_1
  doi: 10.1038/s41467-021-22047-w
– ident: e_1_2_9_48_1
  doi: 10.1002/adfm.202109046
– ident: e_1_2_9_44_1
  doi: 10.1021/nl200758b
– ident: e_1_2_9_6_2
  doi: 10.1002/adma.202200682
– ident: e_1_2_9_46_2
  doi: 10.1016/j.carbon.2018.11.008
– ident: e_1_2_9_158_3
  doi: 10.1038/s41928-021-00556-2
– ident: e_1_2_9_79_4
  doi: 10.1039/D0LC01007C
– ident: e_1_2_9_204_2
  doi: 10.1039/C8EE01468J
– ident: e_1_2_9_105_1
  doi: 10.1002/adma.201603143
– ident: e_1_2_9_138_1
  doi: 10.1016/j.tibtech.2014.04.005
– ident: e_1_2_9_156_1
  doi: 10.1016/j.bspc.2021.103017
– ident: e_1_2_9_17_3
  doi: 10.1038/s41586-018-0823-6
– ident: e_1_2_9_100_3
  doi: 10.1007/s00339-022-05320-7
– ident: e_1_2_9_161_1
  doi: 10.1088/1361-665X/aac0b8
– ident: e_1_2_9_78_1
  doi: 10.1002/smll.202103125
– ident: e_1_2_9_20_1
  doi: 10.1038/s41467-021-26314-8
– ident: e_1_2_9_144_1
  doi: 10.1063/1.1854192
– ident: e_1_2_9_120_1
  doi: 10.1073/pnas.1909532117
– ident: e_1_2_9_51_1
  doi: 10.1002/adfm.201805599
– ident: e_1_2_9_169_1
  doi: 10.1002/admt.202200010
– ident: e_1_2_9_79_2
  doi: 10.1021/acsnano.5b05313
– ident: e_1_2_9_16_2
  doi: 10.1126/sciadv.abm7851
– ident: e_1_2_9_25_1
  doi: 10.1021/cr400625j
– ident: e_1_2_9_84_1
  doi: 10.1039/C8CC07527A
– ident: e_1_2_9_12_3
  doi: 10.1038/s41467-019-09851-1
– ident: e_1_2_9_29_1
  doi: 10.1063/1.3099052
– ident: e_1_2_9_179_2
  doi: 10.1002/adhm.202002255
– ident: e_1_2_9_98_3
  doi: 10.1002/adma.202105306
– ident: e_1_2_9_15_2
  doi: 10.1126/sciadv.abg2507
– ident: e_1_2_9_67_1
  doi: 10.1038/s41928-018-0043-y
– ident: e_1_2_9_201_1
  doi: 10.1038/ncomms6028
– ident: e_1_2_9_148_1
  doi: 10.1038/s41563-020-0703-y
– ident: e_1_2_9_57_2
  doi: 10.1002/anie.202006402
– ident: e_1_2_9_143_1
  doi: 10.1016/j.bios.2021.113265
– ident: e_1_2_9_5_3
  doi: 10.1021/acs.analchem.1c05309
– ident: e_1_2_9_112_4
  doi: 10.1038/s41467-022-29087-w
– ident: e_1_2_9_48_4
  doi: 10.1021/acsami.9b20785
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201503682
– ident: e_1_2_9_104_2
  doi: 10.1016/j.nanoen.2015.01.004
– ident: e_1_2_9_72_1
  doi: 10.1039/C6TA03146C
– ident: e_1_2_9_180_2
  doi: 10.1002/adfm.202203585
– ident: e_1_2_9_5_2
  doi: 10.1002/adma.201501810
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201200359
– ident: e_1_2_9_80_1
  doi: 10.1002/aelm.201500159
– ident: e_1_2_9_76_1
  doi: 10.1002/adma.201302435
– ident: e_1_2_9_159_2
  doi: 10.1039/D0MH01818J
– ident: e_1_2_9_3_4
  doi: 10.1097/00002480-200209000-00017
– ident: e_1_2_9_32_1
  doi: 10.1039/D0NR05486K
– ident: e_1_2_9_102_5
  doi: 10.1002/adfm.202008006
– ident: e_1_2_9_4_1
  doi: 10.1002/adfm.201701269
– ident: e_1_2_9_155_1
  doi: 10.1016/j.nanoen.2020.105648
– ident: e_1_2_9_74_1
  doi: 10.1016/j.carbon.2015.09.108
– ident: e_1_2_9_19_1
  doi: 10.1126/science.aau0780
– ident: e_1_2_9_13_1
  doi: 10.1038/s41551-020-0518-9
– year: 2021
  ident: e_1_2_9_1_4
  publication-title: Nat. Biomed. Eng.
– ident: e_1_2_9_40_1
  doi: 10.1002/adma.201104672
– ident: e_1_2_9_41_2
  doi: 10.1002/adma.201907288
– ident: e_1_2_9_54_1
  doi: 10.1039/C9TC00961B
– ident: e_1_2_9_181_1
  doi: 10.3390/bios11040126
– ident: e_1_2_9_135_1
  doi: 10.1126/sciadv.abg9614
– ident: e_1_2_9_14_2
  doi: 10.1021/acsnano.9b07165
– ident: e_1_2_9_66_1
  doi: 10.1126/sciadv.aar3921
– ident: e_1_2_9_207_4
  doi: 10.1007/s11664-011-1834-3
– ident: e_1_2_9_60_2
  doi: 10.3390/s22020630
– ident: e_1_2_9_121_1
  doi: 10.1016/j.apmt.2020.100699
– ident: e_1_2_9_174_1
  doi: 10.1063/1.4921039
– ident: e_1_2_9_193_1
  doi: 10.1126/science.1260318
– ident: e_1_2_9_93_3
  doi: 10.1039/c1cs90001c
– ident: e_1_2_9_82_1
  doi: 10.1002/adma.201906989
– ident: e_1_2_9_133_1
  doi: 10.1016/j.matt.2021.06.018
– ident: e_1_2_9_37_1
  doi: 10.1002/adfm.201800110
– ident: e_1_2_9_196_1
  doi: 10.1038/nmeth.f.324
– ident: e_1_2_9_61_1
  doi: 10.1038/nature25494
– ident: e_1_2_9_155_3
  doi: 10.1007/s12274-022-4122-z
– ident: e_1_2_9_146_2
  doi: 10.1021/am100154e
– ident: e_1_2_9_101_2
  doi: 10.1038/s41563-021-01093-1
– ident: e_1_2_9_68_1
  doi: 10.1006/jasc.2001.0779
– ident: e_1_2_9_77_2
  doi: 10.1016/j.bios.2020.112878
– ident: e_1_2_9_78_4
  doi: 10.1021/acs.accounts.9b00347
– ident: e_1_2_9_141_1
  doi: 10.1016/j.matt.2020.09.027
– ident: e_1_2_9_207_1
  doi: 10.1039/C5EE01593F
– volume: 31
  year: 2021
  ident: e_1_2_9_99_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.201904765
– ident: e_1_2_9_26_1
  doi: 10.1002/jccs.201100628
– ident: e_1_2_9_119_1
  doi: 10.3390/s22062154
– ident: e_1_2_9_207_2
  doi: 10.1038/s41467-018-07764-z
– ident: e_1_2_9_102_1
  doi: 10.1021/acsnano.5b00599
– ident: e_1_2_9_15_1
  doi: 10.1109/TBCAS.2018.2799623
– ident: e_1_2_9_25_2
  doi: 10.1038/nmat3755
– ident: e_1_2_9_103_3
  doi: 10.1002/adfm.201400712
– ident: e_1_2_9_25_3
  doi: 10.1021/acs.nanolett.1c01039
– ident: e_1_2_9_200_1
  doi: 10.1038/nn.2730
– ident: e_1_2_9_115_1
  doi: 10.1016/j.nanoen.2020.104767
– ident: e_1_2_9_113_2
  doi: 10.1016/j.mtener.2018.05.006
– ident: e_1_2_9_87_2
  doi: 10.1002/adma.202006582
– ident: e_1_2_9_52_2
  doi: 10.1002/adfm.202006273
– ident: e_1_2_9_96_1
  doi: 10.1002/admt.201900728
– ident: e_1_2_9_158_1
  doi: 10.1002/adhm.202100103
– ident: e_1_2_9_85_2
  doi: 10.1126/sciadv.aav3097
– ident: e_1_2_9_30_2
  doi: 10.1021/acsami.9b11774
– volume: 1
  start-page: 99
  year: 2017
  ident: e_1_2_9_60_4
  publication-title: Substantia
– ident: e_1_2_9_107_1
  doi: 10.1126/science.aaa9306
– ident: e_1_2_9_91_1
  doi: 10.1002/aelm.202100178
– ident: e_1_2_9_9_3
  doi: 10.1021/acsami.0c19621
– ident: e_1_2_9_12_2
  doi: 10.1073/pnas.1705509114
– ident: e_1_2_9_90_1
  doi: 10.1039/D1TA05586K
– ident: e_1_2_9_31_1
  doi: 10.1021/acsami.5b02487
– ident: e_1_2_9_60_1
  doi: 10.1021/acs.chemrev.1c00363
– ident: e_1_2_9_127_1
  doi: 10.1016/j.bios.2020.112750
– ident: e_1_2_9_118_2
  doi: 10.1016/j.nanoen.2022.107687
– ident: e_1_2_9_47_1
  doi: 10.1038/s41586-021-03753-3
– ident: e_1_2_9_49_1
  doi: 10.1038/s41524-022-00731-9
– ident: e_1_2_9_150_2
  doi: 10.1016/j.nanoen.2021.106694
– ident: e_1_2_9_48_2
  doi: 10.1016/j.bios.2019.04.034
– ident: e_1_2_9_59_1
  doi: 10.3390/molecules25225288
– ident: e_1_2_9_195_1
  doi: 10.1038/nbt.3093
– ident: e_1_2_9_136_1
  doi: 10.1016/j.bios.2020.112828
– ident: e_1_2_9_23_1
  doi: 10.1038/s41565-018-0226-8
– ident: e_1_2_9_108_1
  doi: 10.1021/acsami.9b03261
– ident: e_1_2_9_207_5
  doi: 10.1073/pnas.1802064115
– ident: e_1_2_9_70_1
  doi: 10.1016/j.ijpx.2019.100023
– ident: e_1_2_9_155_2
  doi: 10.1002/advs.201800496
– ident: e_1_2_9_181_3
  doi: 10.1109/TIM.2014.2312512
– ident: e_1_2_9_52_3
  doi: 10.1021/am404872j
– ident: e_1_2_9_8_1
  doi: 10.1038/s41551-021-00833-7
– ident: e_1_2_9_112_1
  doi: 10.3390/bios12040245
– ident: e_1_2_9_10_1
  doi: 10.1038/s41563-020-0679-7
– ident: e_1_2_9_102_6
  doi: 10.1002/adfm.202001296
– ident: e_1_2_9_97_1
  doi: 10.1186/s11671-015-0748-z
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.accounts.5b00133
– ident: e_1_2_9_3_2
  doi: 10.1016/j.nanoen.2019.104039
– ident: e_1_2_9_81_1
  doi: 10.1021/ja0571592
– ident: e_1_2_9_23_2
  doi: 10.3389/fchem.2019.00399
– ident: e_1_2_9_27_1
  doi: 10.1002/adhm.202002236
– ident: e_1_2_9_56_2
  doi: 10.1002/adma.202104958
– ident: e_1_2_9_209_1
  doi: 10.1002/smll.202201111
– ident: e_1_2_9_175_1
  doi: 10.1002/adma.201400633
– volume: 27
  year: 2017
  ident: e_1_2_9_177_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_167_1
  doi: 10.1021/acsami.1c05291
– ident: e_1_2_9_179_1
  doi: 10.1021/acssensors.9b01127
– ident: e_1_2_9_185_1
  doi: 10.1038/natrevmats.2016.63
– ident: e_1_2_9_2_2
  doi: 10.1002/adfm.201906713
– ident: e_1_2_9_10_2
  doi: 10.1016/j.cej.2021.130921
– ident: e_1_2_9_17_4
  doi: 10.1109/TBCAS.2018.2802443
– ident: e_1_2_9_160_2
  doi: 10.1016/j.scib.2020.02.020
– ident: e_1_2_9_86_1
  doi: 10.1021/acsmaterialslett.1c00246
– ident: e_1_2_9_197_1
  doi: 10.1073/pnas.1909850116
– ident: e_1_2_9_43_1
  doi: 10.1126/science.1157996
– ident: e_1_2_9_157_1
  doi: 10.1002/admt.202101182
– ident: e_1_2_9_199_1
  doi: 10.1073/pnas.1920073117
– ident: e_1_2_9_153_1
  doi: 10.1021/acsami.0c10259
– ident: e_1_2_9_188_3
  doi: 10.1038/ncomms2553
– ident: e_1_2_9_83_2
  doi: 10.1038/nmat5045
– ident: e_1_2_9_35_1
  doi: 10.1002/adfm.201501396
– ident: e_1_2_9_34_1
  doi: 10.1002/aelm.202000780
– ident: e_1_2_9_200_2
  doi: 10.1016/j.neuron.2016.06.034
– ident: e_1_2_9_7_2
  doi: 10.1021/acsomega.9b03634
– ident: e_1_2_9_162_1
  doi: 10.1007/s42114-021-00262-9
– ident: e_1_2_9_7_1
  doi: 10.1007/s10570-021-04066-4
– ident: e_1_2_9_41_1
  doi: 10.1021/acsnano.5b00599
– ident: e_1_2_9_113_1
  doi: 10.1021/acssuschemeng.7b01617
– ident: e_1_2_9_166_1
  doi: 10.1002/aelm.202001084
– ident: e_1_2_9_205_1
  doi: 10.1038/s41551-018-0300-4
– ident: e_1_2_9_188_2
  doi: 10.1126/sciadv.aat0626
– ident: e_1_2_9_9_4
  doi: 10.1038/ncomms14997
– ident: e_1_2_9_93_2
  doi: 10.1007/s10971-011-2465-0
– ident: e_1_2_9_144_2
  doi: 10.1038/s41563-019-0435-z
– ident: e_1_2_9_65_1
  doi: 10.1002/adhm.202101548
– ident: e_1_2_9_79_1
  doi: 10.1039/C6TC00387G
– ident: e_1_2_9_88_2
  doi: 10.1016/j.cej.2021.132779
– ident: e_1_2_9_182_1
  doi: 10.3390/s20174861
– ident: e_1_2_9_210_1
  doi: 10.1126/sciadv.1600955
– ident: e_1_2_9_100_1
  doi: 10.1002/aelm.201600356
– ident: e_1_2_9_103_2
  doi: 10.1002/adma.201305182
– ident: e_1_2_9_63_2
  doi: 10.1021/acsenergylett.8b00928
– ident: e_1_2_9_94_1
  doi: 10.1016/j.cej.2019.01.005
– ident: e_1_2_9_129_1
  doi: 10.1016/j.trac.2019.06.014
– ident: e_1_2_9_192_1
  doi: 10.1109/JSEN.2005.846173
– ident: e_1_2_9_33_1
  doi: 10.1002/adhm.202002280
– ident: e_1_2_9_35_2
  doi: 10.1007/s00216-005-0069-7
– ident: e_1_2_9_189_1
  doi: 10.1038/s41598-018-24502-z
– ident: e_1_2_9_48_3
  doi: 10.1021/acsami.5b10160
– ident: e_1_2_9_177_2
  doi: 10.1016/j.bios.2017.01.058
– ident: e_1_2_9_123_1
  doi: 10.3390/electronics3020234
– ident: e_1_2_9_77_1
  doi: 10.1039/D0NR08453K
– ident: e_1_2_9_50_3
  doi: 10.1002/adfm.202105459
– volume: 2013
  year: 2013
  ident: e_1_2_9_69_1
  publication-title: J. Polym.
– ident: e_1_2_9_35_3
  doi: 10.1002/adfm.200701216
– ident: e_1_2_9_62_1
  doi: 10.1021/accountsmr.0c00021
– ident: e_1_2_9_102_3
  doi: 10.1038/s41467-018-05238-w
– ident: e_1_2_9_11_4
  doi: 10.1038/natrevmats.2016.93
– ident: e_1_2_9_16_1
  doi: 10.1002/adom.201801521
– ident: e_1_2_9_207_3
  doi: 10.1016/j.bios.2006.01.030
– ident: e_1_2_9_57_1
  doi: 10.1002/anie.201709096
– ident: e_1_2_9_61_2
  doi: 10.1002/adhm.202001916
– ident: e_1_2_9_198_1
  doi: 10.1038/s41592-021-01238-9
SSID ssj0031247
Score 2.6529582
SecondaryResourceType review_article
Snippet Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207879
SubjectTerms Artificial intelligence
Biocompatibility
biocompatible materials
Biomedical materials
Biosensors
Chemical sensors
flexible biosensors
Inorganic materials
Internet of Things
in‐sensor computing
Nanotechnology
Organic materials
Temperature sensors
transistors
Wearable technology
wearable/implantable devices
Title Biocompatible Material‐Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207879
https://www.ncbi.nlm.nih.gov/pubmed/37009995
https://www.proquest.com/docview/2832937538
https://www.proquest.com/docview/2794693718
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEICtqqf2AG15bSmVkZA4uZvEcZzl1lJWBXU5UCp6i_xEFdsEbbIXThw59jf2l3TGedAFISS4JfJYec14JsnMN4S8yIz0Kk41E0pKlsaGs9wmOdMTnwkXpS7lWO88e5-dnKfvLsTFnSr-lg8xfHBDywjrNRq40vX4JzS0vprjr4MkAScnsYIv5hnC848_DPwoDs4rdFcBn8UQvNVTG6NkvDp91Sv9FmquRq7B9UzvE9WfdJtx8uVg2egD8-0XnuP_XNUWudfFpfSwVaRtsubKHbJ5h1b4gPw4uqxCynpzqeeOzlQTtPfm-_URuEJLp8jWxBGQq-HtuFrUr-h0UV0NojU9DgkjtKnoJzAxLNsaI58YHi9uw3BYuKgqLX3bgywsPcMs-_Iz7fDqD8n59M3H1yesa-TADJd8wrjOFUaCRuQO4kcpVC6E5NbbxGbW8cgogyWuymusA068jZRxJvK5sZIrxx-R9bIq3RNCufMuS22cCR2nwk8mGtvYetgXmXa5GxHWP8jCdJRzbLYxL1o-c1LgHS6GOzwiLwf5ry3f44-Se71eFJ2d1wU2eoIAD7zGiDwfhsFC8beLKl21BBlk-CN2EGQet_o0HIrLEKKLEUmCVvzlHIqz2enpsLf7L5Oekg3Y5m3G8R5ZbxZL9wziqkbvB9u5BU-0HUY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD79KFAkZC4uRuNo7jhBsFVlvY7YG2glvkJ6rYJtUme-HEkSO_kV_CjPOABSEkuCXxWEnsmcwXe-YbQp6kRno1STQTSkqWTAxnmY0zpnOfChclLuGY77w4TGcnyev3oo8mxFyYlh9iWHBDywjfazRwXJAe_2ANrc-WuHcQx-DlZH6RXAqbdIiL3g4MUhzcV6ivAl6LIfVWz9sYxePN_pt-6TewuYldg_OZXie6f-w25uTj3rrRe-bTL4yO__VeN8i1DprS560u3SQXXHmLXP2JsPA2-bJ_WoWo9eZULx1dqCYo8LfPX_fBG1o6RXpNbAG5Gn6Qq1X9jE5X1dkgWtOXIWaENhV9B1aGmVtjpCiGGcZjaA7fLqpKSw96LgtLjzDQvvxAO4b1O-Rk-ur4xYx1tRyY4ZLnjOtMIRg0InMAIaVQmRCSW29jm1rHI6MMZrkqrzEVOPY2UsaZyGfGSq4c3yZbZVW6HUK58y5N7CQVepIIn-caK9l6OBepdpkbEdbPZGE6onOst7EsWormuMARLoYRHpGng_x5S_HxR8ndXjGKztTrAms9AcYDxzEij4dmMFLceVGlq9YggzT-yDwIMndbhRpuxWVA6WJE4qAWf3mG4mgxnw9n9_6l0yNyeXa8mBfzg8M398kVuM7bAORdstWs1u4BwKxGPwyG9B0XkSFk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOlFdhoYCRkDilm43jOOFGKVELuxWiVPQW-Ykqtkm1yV44ceTY39hf0hnnQReEkOAWxxPFsWcyX-KZbwh5kWjh5CRWAZdCBPFEsyA1URqozCXchrGNGeY7z_aT3cP43RE_upTF3_JDDD_c0DL8-xoN_NS48U_S0PpkjlsHUQROTmRXybU4AV-JsOjjQCDFwHv58irgtAJk3uppG8NovHr9qlv6DWuuQlfve_J1IvtRtyEnX7eWjdrS334hdPyfx7pNbnXAlL5uNekOuWLLu-TmJbrCe-TH9nHlY9abYzW3dCYbr77n38-2wRcamiO5JvaAXA2fx9WifkXzRXUyiNZ0x0eM0Kain8HGMG9rjATFsL54DN3-zUVlaehez2Rh6AGG2ZdfaMevfp8c5m8_vdkNukoOgWaCZQFTqUQoqHlqAUAKLlPOBTPORCYxloVaasxxlU5hInDkTCi11aFLtRFMWrZB1sqqtA8JZdbZJDaThKtJzF2WKaxj66DNE2VTOyJBv5CF7mjOsdrGvGgJmqMCZ7gYZnhEXg7ypy3Bxx8lN3u9KDpDrwus9AQID9zGiDwfusFEcd9FlrZaggyS-CPvIMg8aPVpuBUTHqPzEYm8VvxlDMXBbDodWo_-5aJn5PqHnbyY7u2_f0xuwGnWRh9vkrVmsbRPAGM16qk3owubmSAT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatible+Material-Based+Flexible+Biosensors%3A+From+Materials+Design+to+Wearable%2FImplantable+Devices+and+Integrated+Sensing+Systems&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Gang&rft.au=Lv%2C+Ziyu&rft.au=Batool%2C+Saima&rft.au=Li%2C+Ming-Zheng&rft.date=2023-07-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=27&rft.spage=e2207879&rft_id=info:doi/10.1002%2Fsmll.202207879&rft_id=info%3Apmid%2F37009995&rft.externalDocID=37009995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon