Biocompatible Material‐Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personaliz...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 27; pp. e2207879 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202207879 |
Cover
Abstract | Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material‐to‐device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in‐sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Flexible biosensors (pressure, optical, temperature, and electrochemical sensors) prepared from various biocompatible materials have the capability to monitor physiological signals such as heart rate, temperature, and body fluid markers. Sophisticated wearable/implantable sensors and systems for optimizing every aspect of the personal health and performance can be achieved through rational design of functional material and device architecture, as well as the use of advanced processing/integration approaches. |
---|---|
AbstractList | Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered. Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material‐to‐device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in‐sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered. Flexible biosensors (pressure, optical, temperature, and electrochemical sensors) prepared from various biocompatible materials have the capability to monitor physiological signals such as heart rate, temperature, and body fluid markers. Sophisticated wearable/implantable sensors and systems for optimizing every aspect of the personal health and performance can be achieved through rational design of functional material and device architecture, as well as the use of advanced processing/integration approaches. Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered. |
Author | Liu, Gang Li, Ming‐Zheng Lv, Ziyu Zhao, Pengfei Zhou, Ye Han, Su‐Ting Guo, Liangchao Batool, Saima Wang, Yan |
Author_xml | – sequence: 1 givenname: Gang surname: Liu fullname: Liu, Gang organization: Shenzhen University – sequence: 2 givenname: Ziyu surname: Lv fullname: Lv, Ziyu email: lvziyu@szu.edu.cn organization: Shenzhen University – sequence: 3 givenname: Saima surname: Batool fullname: Batool, Saima organization: Shenzhen University – sequence: 4 givenname: Ming‐Zheng surname: Li fullname: Li, Ming‐Zheng organization: MGI Tech Co., Ltd – sequence: 5 givenname: Pengfei surname: Zhao fullname: Zhao, Pengfei organization: Shenzhen University – sequence: 6 givenname: Liangchao surname: Guo fullname: Guo, Liangchao organization: Yangzhou University – sequence: 7 givenname: Yan surname: Wang fullname: Wang, Yan organization: Hefei University of Technology – sequence: 8 givenname: Ye surname: Zhou fullname: Zhou, Ye organization: Shenzhen University – sequence: 9 givenname: Su‐Ting orcidid: 0000-0003-3392-7569 surname: Han fullname: Han, Su‐Ting email: sutinghan@szu.edu.cn organization: Shenzhen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37009995$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi3Uin7AlSOyxIVLUq-9Xq-50ZbQSKk4BMTRcuzZyJXXDvYGyK1HjvxGfglO06ZSJcRpRprneTWaOUEHIQZA6FVFxhUh9Cz33o8poZSIVshn6LhqKjZqWioP9n1FjtBJzjeEsIrW4jk6YoIQKSU_Rr_OXTSxX-nBLTzgaz1Actr_uf19rjNYPPHw825SuAwhx5Tf4UmK_R7N-BKyWwY8RPwVdNKFPpv2K6_DsO3L-LszkLEOFk_DAMtUTIvnJc2FJZ5v8gB9foEOuxIGL-_rKfoy-fD54mo0-_RxevF-NjJMMDlii1Y3nLSGt9DwRnDdci6Y7Sy1jQVGjDa8ZrXuFkxWDe0s0QYM6VpjBdPATtHbXe4qxW9ryIPqXTbgy7oQ11lRIetGMlG1BX3zBL2J6xTKdoq2jBaIsy31-p5aL3qwapVcr9NGPdy4APUOMCnmnKBTxg3l3jEMSTuvKqK2r1TbV6r9K4s2fqI9JP9TkDvhh_Ow-Q-t5tez2aP7F7OKtGU |
CitedBy_id | crossref_primary_10_1021_acsaem_4c00993 crossref_primary_10_1002_EXP_20220167 crossref_primary_10_1021_acsaelm_3c01409 crossref_primary_10_3390_gels10080498 crossref_primary_10_1021_acsmeasuresciau_3c00034 crossref_primary_10_1016_j_cej_2024_156884 crossref_primary_10_1039_D4CS00220B crossref_primary_10_1016_j_cej_2024_152445 crossref_primary_10_1088_2631_8695_ad82a7 crossref_primary_10_1002_adfm_202424382 crossref_primary_10_1021_acs_chemrev_3c00392 crossref_primary_10_1021_acsnano_4c18846 crossref_primary_10_1002_adom_202400702 crossref_primary_10_1039_D3MH02013D crossref_primary_10_1002_inf2_12508 crossref_primary_10_1002_adsr_202300137 crossref_primary_10_1002_smll_202409711 crossref_primary_10_1016_j_cej_2024_153684 crossref_primary_10_1021_acsnano_3c11832 crossref_primary_10_1002_adfm_202416419 crossref_primary_10_1002_adsr_202400018 crossref_primary_10_3390_s24165143 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1039_D4TC00894D crossref_primary_10_1002_adfm_202422778 crossref_primary_10_1007_s40843_024_3238_4 crossref_primary_10_1002_admt_202400849 crossref_primary_10_1016_j_memori_2024_100102 crossref_primary_10_3390_bioengineering11080817 crossref_primary_10_1039_D3TC03611A crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1039_D3NR06099C crossref_primary_10_1016_j_colsurfa_2024_133672 crossref_primary_10_1016_j_biomaterials_2024_122862 crossref_primary_10_3390_s24072180 crossref_primary_10_1021_acsanm_4c04527 crossref_primary_10_1016_j_diamond_2024_111724 crossref_primary_10_1002_admt_202300404 crossref_primary_10_1002_smll_202310110 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_1021_acssensors_3c01384 crossref_primary_10_1039_D4TA03076A crossref_primary_10_1088_1674_4926_24100003 crossref_primary_10_1007_s00339_024_07444_4 crossref_primary_10_1088_2631_7990_ad65a0 crossref_primary_10_1002_adhm_202401532 crossref_primary_10_3390_ma17030668 crossref_primary_10_1002_adma_202411659 crossref_primary_10_1039_D4AN00665H crossref_primary_10_1002_adfm_202413324 crossref_primary_10_1109_JSEN_2023_3345405 crossref_primary_10_1016_j_bios_2025_117133 crossref_primary_10_1016_j_biotechadv_2023_108297 crossref_primary_10_1016_j_cej_2025_160213 crossref_primary_10_1002_adfm_202405231 crossref_primary_10_1038_s41378_025_00891_w |
Cites_doi | 10.1002/adhm.201800275 10.1002/adfm.201910547 10.1038/s41578-022-00460-x 10.1038/s41928-020-00501-9 10.1073/pnas.1718721115 10.1016/j.talanta.2020.121153 10.1002/adfm.201500856 10.1002/smtd.202100771 10.1021/acs.nanolett.9b02014 10.1002/adfm.200601239 10.1002/adsu.202000056 10.1002/adom.202002206 10.1002/aelm.202100753 10.1038/s41578-022-00427-y 10.1038/s41467-020-18503-8 10.1016/j.bios.2019.111617 10.3390/s20143953 10.1161/CIRCULATIONAHA.116.025037 10.1038/am.2017.189 10.1038/s41928-018-0041-0 10.1016/S0140-6736(21)00684-X 10.1016/j.addma.2021.102088 10.1021/acssensors.0c00604 10.1126/science.aah4496 10.1038/s41378-020-00208-z 10.1002/adma.202109357 10.1002/adma.201300794 10.1002/adma.202008539 10.1021/acs.nanolett.7b04184 10.1002/adhm.202100460 10.1126/science.1167130 10.1002/aisy.202000159 10.1126/sciadv.1601314 10.3390/s151128889 10.1126/sciadv.aaw7846 10.1021/acsami.1c15636 10.1016/j.cej.2021.131171 10.1038/s41467-020-20803-y 10.1002/adma.202201608 10.3390/nano11071854 10.1038/s41551-017-0154-1 10.1002/adfm.201910292 10.1016/j.matt.2021.09.012 10.1002/adfm.201805754 10.1109/JPROC.2019.2930808 10.1126/science.aao0098 10.1002/adma.201905527 10.1038/nature16521 10.1021/acssensors.9b00891 10.1073/pnas.0401918101 10.1371/journal.pone.0038436 10.1126/science.1182383 10.1126/sciadv.aaz6767 10.1002/smll.201801657 10.1126/sciadv.1601966 10.1021/cg0704753 10.3390/s20195701 10.1002/smll.202000472 10.3389/fphys.2016.00071 10.1002/adma.201505739 10.1002/adhm.201700024 10.1002/adma.201808138 10.1021/acs.chemrev.8b00016 10.1021/acs.chemrev.0c01177 10.1002/adma.202108607 10.3390/mi12070810 10.1002/adfm.202006612 10.1021/acssensors.2c00787 10.1002/adfm.201605657 10.1021/acs.nanolett.9b02978 10.1021/acssensors.1c01614 10.1002/adma.201504245 10.1002/anie.201209676 10.1002/aelm.202000944 10.1038/s41586-018-0390-x 10.1002/aelm.202100591 10.3390/s22051996 10.1038/nmat2834 10.1016/j.jallcom.2019.05.145 10.1088/1361-6528/aaa855 10.1002/adom.202001693 10.1016/j.isci.2020.101966 10.1021/acsnano.0c09015 10.1002/adma.202102332 10.1063/1.2416001 10.1021/acssensors.2c00830 10.1016/j.sna.2020.112144 10.1038/s41586-019-1493-8 10.1021/acsami.7b04687 10.1021/acssensors.1c00281 10.1016/j.nanoen.2021.106282 10.1016/j.neuron.2016.12.031 10.1038/s41467-018-06879-7 10.1038/s41467-021-27066-1 10.1016/j.jneumeth.2014.07.025 10.1039/C8TB01063C 10.1016/j.nanoen.2021.106031 10.1002/adma.201605056 10.1016/j.nanoen.2014.11.034 10.1016/j.snb.2020.128936 10.1016/j.scib.2021.09.014 10.1021/acs.chemmater.7b00181 10.1016/j.jallcom.2021.160954 10.1038/s41551-018-0194-1 10.1038/s41563-020-0638-3 10.1038/s41586-021-03251-6 10.1002/adfm.201701117 10.1002/adfm.201001031 10.1002/adhm.201800074 10.1016/j.nanoen.2018.05.014 10.1038/nprot.2016.155 10.1016/j.nanoen.2019.05.019 10.1016/j.nanoen.2018.05.020 10.1038/s41551-021-00719-8 10.1038/s41467-021-25719-9 10.1002/adma.201703787 10.1038/nmat4290 10.1021/sc500161b 10.1016/j.progpolymsci.2021.101474 10.1002/adma.202202622 10.1002/slct.201601043 10.1002/adfm.202111747 10.1016/j.compositesb.2021.108621 10.1038/nnano.2006.131 10.1016/j.aca.2021.338643 10.1002/advs.202104404 10.1038/s41427-022-00357-9 10.1038/ncomms5007 10.3390/s21217172 10.1021/acsanm.1c00858 10.1038/s41551-022-00916-z 10.1038/s41467-020-14439-1 10.3390/molecules25132970 10.1002/adma.202004115 10.1038/nmat3064 10.1002/adfm.201001397 10.1021/acsami.8b19425 10.1038/nature20102 10.1021/acssensors.6b00356 10.1016/j.nanoen.2021.106611 10.1088/2058-8585/1/2/023002 10.1038/s41587-019-0321-x 10.1002/tcr.202000114 10.1038/s41551-017-0051 10.2109/jcersj2.15316 10.1002/adma.201400334 10.1002/aelm.202000641 10.1021/acsnano.8b06492 10.1002/inf2.12047 10.1002/adma.201801072 10.1038/nmat2879 10.1021/acs.chemrev.8b00599 10.1016/j.snb.2018.02.060 10.1038/s41467-021-22047-w 10.1002/adfm.202109046 10.1021/nl200758b 10.1002/adma.202200682 10.1016/j.carbon.2018.11.008 10.1038/s41928-021-00556-2 10.1039/D0LC01007C 10.1039/C8EE01468J 10.1002/adma.201603143 10.1016/j.tibtech.2014.04.005 10.1016/j.bspc.2021.103017 10.1038/s41586-018-0823-6 10.1007/s00339-022-05320-7 10.1088/1361-665X/aac0b8 10.1002/smll.202103125 10.1038/s41467-021-26314-8 10.1063/1.1854192 10.1073/pnas.1909532117 10.1002/adfm.201805599 10.1002/admt.202200010 10.1021/acsnano.5b05313 10.1126/sciadv.abm7851 10.1021/cr400625j 10.1039/C8CC07527A 10.1038/s41467-019-09851-1 10.1063/1.3099052 10.1002/adhm.202002255 10.1002/adma.202105306 10.1126/sciadv.abg2507 10.1038/s41928-018-0043-y 10.1038/ncomms6028 10.1038/s41563-020-0703-y 10.1002/anie.202006402 10.1016/j.bios.2021.113265 10.1021/acs.analchem.1c05309 10.1038/s41467-022-29087-w 10.1021/acsami.9b20785 10.1002/adma.201503682 10.1016/j.nanoen.2015.01.004 10.1039/C6TA03146C 10.1002/adfm.202203585 10.1002/adma.201501810 10.1002/adma.201200359 10.1002/aelm.201500159 10.1002/adma.201302435 10.1039/D0MH01818J 10.1097/00002480-200209000-00017 10.1039/D0NR05486K 10.1002/adfm.202008006 10.1002/adfm.201701269 10.1016/j.nanoen.2020.105648 10.1016/j.carbon.2015.09.108 10.1126/science.aau0780 10.1038/s41551-020-0518-9 10.1002/adma.201104672 10.1002/adma.201907288 10.1039/C9TC00961B 10.3390/bios11040126 10.1126/sciadv.abg9614 10.1021/acsnano.9b07165 10.1126/sciadv.aar3921 10.1007/s11664-011-1834-3 10.3390/s22020630 10.1016/j.apmt.2020.100699 10.1063/1.4921039 10.1126/science.1260318 10.1039/c1cs90001c 10.1002/adma.201906989 10.1016/j.matt.2021.06.018 10.1002/adfm.201800110 10.1038/nmeth.f.324 10.1038/nature25494 10.1007/s12274-022-4122-z 10.1021/am100154e 10.1038/s41563-021-01093-1 10.1006/jasc.2001.0779 10.1016/j.bios.2020.112878 10.1021/acs.accounts.9b00347 10.1016/j.matt.2020.09.027 10.1039/C5EE01593F 10.1002/adma.201904765 10.1002/jccs.201100628 10.3390/s22062154 10.1038/s41467-018-07764-z 10.1021/acsnano.5b00599 10.1109/TBCAS.2018.2799623 10.1038/nmat3755 10.1002/adfm.201400712 10.1021/acs.nanolett.1c01039 10.1038/nn.2730 10.1016/j.nanoen.2020.104767 10.1016/j.mtener.2018.05.006 10.1002/adma.202006582 10.1002/adfm.202006273 10.1002/admt.201900728 10.1002/adhm.202100103 10.1126/sciadv.aav3097 10.1021/acsami.9b11774 10.1126/science.aaa9306 10.1002/aelm.202100178 10.1021/acsami.0c19621 10.1073/pnas.1705509114 10.1039/D1TA05586K 10.1021/acsami.5b02487 10.1021/acs.chemrev.1c00363 10.1016/j.bios.2020.112750 10.1016/j.nanoen.2022.107687 10.1038/s41586-021-03753-3 10.1038/s41524-022-00731-9 10.1016/j.nanoen.2021.106694 10.1016/j.bios.2019.04.034 10.3390/molecules25225288 10.1038/nbt.3093 10.1016/j.bios.2020.112828 10.1038/s41565-018-0226-8 10.1021/acsami.9b03261 10.1073/pnas.1802064115 10.1016/j.ijpx.2019.100023 10.1002/advs.201800496 10.1109/TIM.2014.2312512 10.1021/am404872j 10.1038/s41551-021-00833-7 10.3390/bios12040245 10.1038/s41563-020-0679-7 10.1002/adfm.202001296 10.1186/s11671-015-0748-z 10.1021/acs.accounts.5b00133 10.1016/j.nanoen.2019.104039 10.1021/ja0571592 10.3389/fchem.2019.00399 10.1002/adhm.202002236 10.1002/adma.202104958 10.1002/smll.202201111 10.1002/adma.201400633 10.1021/acsami.1c05291 10.1021/acssensors.9b01127 10.1038/natrevmats.2016.63 10.1002/adfm.201906713 10.1016/j.cej.2021.130921 10.1109/TBCAS.2018.2802443 10.1016/j.scib.2020.02.020 10.1021/acsmaterialslett.1c00246 10.1073/pnas.1909850116 10.1126/science.1157996 10.1002/admt.202101182 10.1073/pnas.1920073117 10.1021/acsami.0c10259 10.1038/ncomms2553 10.1038/nmat5045 10.1002/adfm.201501396 10.1002/aelm.202000780 10.1016/j.neuron.2016.06.034 10.1021/acsomega.9b03634 10.1007/s42114-021-00262-9 10.1007/s10570-021-04066-4 10.1021/acssuschemeng.7b01617 10.1002/aelm.202001084 10.1038/s41551-018-0300-4 10.1126/sciadv.aat0626 10.1038/ncomms14997 10.1007/s10971-011-2465-0 10.1038/s41563-019-0435-z 10.1002/adhm.202101548 10.1039/C6TC00387G 10.1016/j.cej.2021.132779 10.3390/s20174861 10.1126/sciadv.1600955 10.1002/aelm.201600356 10.1002/adma.201305182 10.1021/acsenergylett.8b00928 10.1016/j.cej.2019.01.005 10.1016/j.trac.2019.06.014 10.1109/JSEN.2005.846173 10.1002/adhm.202002280 10.1007/s00216-005-0069-7 10.1038/s41598-018-24502-z 10.1021/acsami.5b10160 10.1016/j.bios.2017.01.058 10.3390/electronics3020234 10.1039/D0NR08453K 10.1002/adfm.202105459 10.1002/adfm.200701216 10.1021/accountsmr.0c00021 10.1038/s41467-018-05238-w 10.1038/natrevmats.2016.93 10.1002/adom.201801521 10.1016/j.bios.2006.01.030 10.1002/anie.201709096 10.1002/adhm.202001916 10.1038/s41592-021-01238-9 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202207879 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37009995 10_1002_smll_202207879 SMLL202207879 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Guangdong Provincial Department of Science and Technology funderid: 2021A1515012569 – fundername: NTUT‐SZU Joint Research Program – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality funderid: JCYJ20210324095207020; RCYX20200714114524157; JCYJ20220818100206013; 20200804172625001 – fundername: National Natural Science Foundation of China funderid: 62122055; 62074104; 61974093; 62104154 – fundername: NTUT-SZU Joint Research Program – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: JCYJ20220818100206013 – fundername: Guangdong Provincial Department of Science and Technology grantid: 2021A1515012569 – fundername: National Natural Science Foundation of China grantid: 61974093 – fundername: National Natural Science Foundation of China grantid: 62104154 – fundername: National Natural Science Foundation of China grantid: 62074104 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: RCYX20200714114524157 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: 20200804172625001 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: JCYJ20210324095207020 – fundername: National Natural Science Foundation of China grantid: 62122055 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3739-3b8a6508c58e65675a85573dfd2d6de30cac5434afb39162fd0acec0f8cd73ae3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Sep 04 23:54:45 EDT 2025 Fri Jul 25 12:16:41 EDT 2025 Mon Jul 21 06:00:51 EDT 2025 Tue Jul 01 02:54:29 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Wed Jan 22 16:20:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | flexible biosensors biocompatible materials wearable/implantable devices in-sensor computing transistors |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-3b8a6508c58e65675a85573dfd2d6de30cac5434afb39162fd0acec0f8cd73ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3392-7569 |
PMID | 37009995 |
PQID | 2832937538 |
PQPubID | 1046358 |
PageCount | 43 |
ParticipantIDs | proquest_miscellaneous_2794693718 proquest_journals_2832937538 pubmed_primary_37009995 crossref_citationtrail_10_1002_smll_202207879 crossref_primary_10_1002_smll_202207879 wiley_primary_10_1002_smll_202207879_SMLL202207879 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009 2020 2013; 94 16 25 2016 2018; 1 17 2006 2018 2013; 1 4 4 2020; 20 2019; 11 2014 2010 2021; 5 9 590 2021; 328 2021 2021 2014; 11 397 63 2021 2021 2021 2021; 10 6 4 211 2014; 26 2017 2018; 5 9 2015 2016 2018 2019 2021 2020; 9 28 9 19 31 30 2018 2019 2021; 13 7 12 2021 2018 2022; 81 5 15 2019 2020; 11 65 2020; 12 2020; 11 2022; 22 2017 2017 2019 2018; 12 93 565 12 2018; 49 2020; 19 2022 2020 2013 2019; 22 31 5 797 2021 2022 2022; 13 430 14 2018; 8 2018; 3 2009 2019; 323 143 2020 2020 2021 2017; 32 20 13 8 2013; 2013 2018; 1 2017 2015 2011; 27 14 21 2013; 52 2019 2022; 31 92 2021 2021 2021; 121 33 11 2014; 14 2012; 24 2014 2013 2021; 114 12 21 2022 2021 2019 2022; 12 89 119 13 2020; 218 2019; 7 2021; 46 2018; 28 2019; 5 2010 2017 2021; 326 355 33 2019; 2 2018 2018; 9 11 2019; 1 2015; 244 2021 2018 2022 2017; 12 7 34 2 2022; 91 2011 2016; 14 91 2016; 96 2019 2011 2011; 13 59 40 2020; 32 2019 2021 2022; 4 33 7 2017; 135 2018; 27 2011; 8 2016; 4 2015; 350 2015 2021; 10 885 2022 2022; 34 32 2016; 7 2018 2014 2014 2018; 50 26 24 29 2016; 1 2005 2020; 86 19 2018 2022; 4 9 2020; 31 2021 2020 2018; 21 14 360 2007 2010; 17 2 2020; 30 2022; 7 2022; 8 2019 2021; 4 10 2016 2016 2020 2021; 4 10 6 21 2005; 5 2020; 25 2020; 312 2022 2022 2021 2021 2021; 34 34 10 12 2016; 28 2021 2022; 15 102 2018; 14 2014; 32 2022; 18 2019; 572 2017; 6 2015 2005 2008; 25 383 18 2017; 1 2022 2018; 125 3 2013; 25 2017; 3 2015; 347 2022 2022; 428 32 2015; 33 2019; 368 2011; 11 2011; 10 2008; 8 2012; 59 2014 2006; 3 89 2017; 9 2017 2021; 56 60 2019; 363 2020; 7 2015; 48 2020; 6 2020; 5 2020; 4 2014; 5 2020; 3 2015 2020; 9 32 2021; 31 2021 2021; 12 4 2019; 62 2020; 1 2014; 2 2021; 33 2019 2016; 31 28 2021; 596 2016 2010 2022; 2 9 128 2019 2022 2017 2018; 7 8 9 560 2016 2019; 28 11 2018 2021; 12 7 2017 2019; 3 5 2019; 116 2020 2022; 19 427 2019; 118 2020 2022; 38 6 2022 2022 2021 2017; 122 22 7 1 2006; 128 2022 2021; 7 66 2021; 9 2004; 101 2015; 1 2020 2019; 6 5 2021; 7 2015; 15 2022 2021; 6 24 2021; 6 2015; 14 2021; 1179 2021; 5 2021; 4 2019 2021; 107 8 2021; 3 2018 2019; 6 30 2018 2018; 115 18 2016; 529 2016; 124 2021 2021 2019 2020 2017; 17 21 119 53 27 2017; 29 2021; 185 2021 2021; 70 9 2015 2018 2006 2011 2018; 8 9 21 41 115 2019 2019 2022 2002; 31 65 7 48 2008; 321 2022 2019 2016 2020; 32 136 8 12 2015; 9 2015; 7 2019; 143 2020 2017 2019; 11 114 10 2021; 13 2015; 25 2021; 10 2021 2020 2020 2020; 28 5 7 30 2021; 12 2017 2017 2018; 27 91 2 2021 2021; 9 20 2020; 73 2021; 18 2021 2022 2016; 12 34 539 2020; 117 2021; 172 2021 2021 2021; 8 33 31 2021 2021 2017; 13 175 29 2018 2022; 262 34 2021; 174 2018 2021; 555 10 2022 2021; 7 85 2012; 7 2018; 54 2020 2015 2022 2021; 4 27 94 5 2018 2018; 1 7 2002 2010; 29 20 e_1_2_9_79_1 e_1_2_9_10_2 e_1_2_9_56_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_122_2 e_1_2_9_145_1 Won S. M. (e_1_2_9_1_4) 2021 e_1_2_9_168_1 e_1_2_9_79_2 e_1_2_9_18_1 e_1_2_9_79_3 e_1_2_9_183_1 e_1_2_9_79_4 e_1_2_9_160_2 e_1_2_9_160_1 e_1_2_9_60_3 e_1_2_9_60_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_83_2 e_1_2_9_204_2 e_1_2_9_6_3 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_2 e_1_2_9_157_1 e_1_2_9_68_2 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_11_3 e_1_2_9_11_2 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_144_2 e_1_2_9_11_4 Wang B. (e_1_2_9_178_1) 2022; 8 e_1_2_9_57_2 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_2 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_2 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_4 e_1_2_9_5_3 e_1_2_9_5_2 e_1_2_9_5_1 e_1_2_9_118_2 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_179_2 e_1_2_9_156_2 e_1_2_9_23_3 e_1_2_9_46_2 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_77_3 e_1_2_9_77_2 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_109_2 e_1_2_9_92_1 e_1_2_9_109_1 Zhang L. (e_1_2_9_99_1) 2021; 31 e_1_2_9_101_2 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_2 Hong S. (e_1_2_9_177_1) 2017; 27 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_16_4 e_1_2_9_16_3 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_66_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_2 e_1_2_9_159_2 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_8_2 e_1_2_9_136_1 e_1_2_9_151_2 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_151_3 e_1_2_9_174_1 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_78_1 e_1_2_9_93_3 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_3 e_1_2_9_100_2 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_123_2 e_1_2_9_146_2 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_78_5 e_1_2_9_17_1 e_1_2_9_78_4 e_1_2_9_184_1 e_1_2_9_78_3 e_1_2_9_184_2 e_1_2_9_17_3 e_1_2_9_17_2 Rasmussen S. C. (e_1_2_9_60_4) 2017; 1 e_1_2_9_161_1 e_1_2_9_17_4 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_3 e_1_2_9_158_3 e_1_2_9_112_2 e_1_2_9_158_2 e_1_2_9_112_1 e_1_2_9_158_4 e_1_2_9_7_4 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_7_3 e_1_2_9_112_4 e_1_2_9_173_3 e_1_2_9_207_2 e_1_2_9_150_2 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_207_4 e_1_2_9_173_2 e_1_2_9_207_3 e_1_2_9_29_2 e_1_2_9_29_1 e_1_2_9_207_5 e_1_2_9_150_1 e_1_2_9_29_3 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_98_3 e_1_2_9_52_4 e_1_2_9_52_3 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_103_4 e_1_2_9_103_3 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_14_3 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_87_3 e_1_2_9_200_2 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_2 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_102_6 e_1_2_9_102_5 e_1_2_9_102_4 e_1_2_9_102_3 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_38_2 e_1_2_9_140_2 e_1_2_9_15_2 e_1_2_9_163_2 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_88_2 El‐Sheikh M. A. (e_1_2_9_69_1) 2013; 2013 e_1_2_9_88_3 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_5 e_1_2_9_1_3 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_137_2 e_1_2_9_9_4 e_1_2_9_9_3 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_3 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_12_3 e_1_2_9_35_2 e_1_2_9_120_1 e_1_2_9_35_3 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_2 e_1_2_9_181_3 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_85_2 e_1_2_9_4_1 e_1_2_9_155_2 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_155_3 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_97_2 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_3 e_1_2_9_104_3 e_1_2_9_104_2 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_188_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_180_2 e_1_2_9_63_2 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_4 e_1_2_9_3_3 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_177_3 e_1_2_9_154_2 e_1_2_9_116_1 e_1_2_9_177_2 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_25_1 e_1_2_9_48_3 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_25_3 e_1_2_9_48_1 e_1_2_9_48_4 e_1_2_9_192_1 |
References_xml | – volume: 11 start-page: 805 year: 2020 publication-title: Nat. Commun. – volume: 19 427 start-page: 590 year: 2020 2022 publication-title: Nat. Mater. Chem. Eng. J. – volume: 18 year: 2022 publication-title: Small – volume: 31 28 start-page: 4184 year: 2019 2016 publication-title: Adv. Mater. Adv. Mater. – volume: 8 start-page: 507 year: 2008 publication-title: Cryst. Growth Des. – volume: 7 year: 2012 publication-title: PLoS One – volume: 12 start-page: 5979 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 569 year: 2011 publication-title: Nat. Mater. – volume: 91 year: 2022 publication-title: Nano Energy – volume: 1 4 4 start-page: 201 1543 year: 2006 2018 2013 publication-title: Nat. Nanotechnol. Sci. Adv. Nat. Commun. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 25 start-page: 2970 year: 2020 publication-title: Molecules – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 5028 year: 2014 publication-title: Nat. Commun. – volume: 14 start-page: 643 year: 2015 publication-title: Nat. Mater. – volume: 86 19 start-page: 13 year: 2005 2020 publication-title: Appl. Phys. Lett. Nat. Mater. – volume: 12 4 start-page: 6755 3725 year: 2021 2021 publication-title: Nat. Commun. Matter – volume: 22 start-page: 2154 year: 2022 publication-title: Sensors – volume: 117 start-page: 2835 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 6 start-page: 217 1225 year: 2020 2022 publication-title: Nat. Biotechnol. Nat. Biomed. Eng. – volume: 13 430 14 start-page: 11 year: 2021 2022 2022 publication-title: ACS Appl. Mater. Interfaces Chem. Eng. J. NPG Asia Mater. – volume: 9 28 9 19 31 30 start-page: 5929 2601 2786 6087 year: 2015 2016 2018 2019 2021 2020 publication-title: ACS Nano Adv. Mater. Nat. Commun. Nano Lett. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 326 355 33 start-page: 1603 59 year: 2010 2017 2021 publication-title: Science Science Adv. Mater. – volume: 128 start-page: 1723 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 4 start-page: 6796 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 32 20 13 8 start-page: 5701 2062 year: 2020 2020 2021 2017 publication-title: Adv. Mater. Sensors ACS Appl. Mater. Interf. Nat. Commun. – volume: 124 start-page: 653 year: 2016 publication-title: J. Ceram. Soc. Jpn. – volume: 14 start-page: 161 year: 2014 publication-title: Nano Energy – volume: 2 9 128 start-page: 859 214 year: 2016 2010 2022 publication-title: Adv. Electron. Mater. Nat. Mater. Appl. Phys. A – volume: 347 start-page: 159 year: 2015 publication-title: Science – volume: 26 start-page: 5310 year: 2014 publication-title: Adv. Mater. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 262 34 start-page: 771 year: 2018 2022 publication-title: Sens. Actuators, B Adv. Mater. – volume: 6 start-page: 100 year: 2020 publication-title: Microsyst Nanoeng. – volume: 34 32 year: 2022 2022 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 8 start-page: 50 year: 2022 publication-title: npj Comput. Mater. – volume: 81 5 15 start-page: 5418 year: 2021 2018 2022 publication-title: Nano Energy Adv. Sci. Nano Res. – volume: 20 start-page: 4861 year: 2020 publication-title: Sensors – volume: 1 year: 2016 publication-title: Flexible Printed Electron. – volume: 28 11 start-page: 1420 year: 2016 2019 publication-title: Adv. Mater. ACS Appl. Mater. Interf. – volume: 33 start-page: 277 year: 2015 publication-title: Nat. Biotechnol. – volume: 1 start-page: 146 year: 2020 publication-title: Acc Mater Res – volume: 1 start-page: 0051 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 4 10 start-page: 2196 year: 2019 2021 publication-title: ACS Sens. Adv. Healthcare Mater. – volume: 1 7 start-page: 183 year: 2018 2018 publication-title: Nat. Electron. Adv. Healthcare Mater. – volume: 172 year: 2021 publication-title: Biosens. Bioelectron. – volume: 24 start-page: 1805 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 26 year: 2011 publication-title: Nat. Methods – volume: 4 27 94 5 start-page: 7620 3320 year: 2020 2015 2022 2021 publication-title: Adv. Sustainable Syst. Adv. Mater. Anal. Chem. Small Methods – volume: 10 885 start-page: 27 year: 2015 2021 publication-title: Nanoscale Res. Lett. J. Alloys Compd. – volume: 8 start-page: 5965 year: 2018 publication-title: Sci. Rep. – volume: 62 start-page: 329 year: 2019 publication-title: Nano Energy – volume: 8 9 21 41 115 start-page: 2677 5349 2015 984 6632 year: 2015 2018 2006 2011 2018 publication-title: Energy Environ. Sci. Nat. Commun. Biosens. Bioelectron. J. Electron. Mater. Proc. Natl. Acad. Sci. USA – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 12 34 539 start-page: 5701 411 year: 2021 2022 2016 publication-title: Nat. Commun. Adv. Mater. Nature – volume: 26 start-page: 6307 year: 2014 publication-title: Adv. Mater. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 363 year: 2019 publication-title: Science – volume: 328 year: 2021 publication-title: Sens. Actuators, B – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 27 91 2 start-page: 885 151 year: 2017 2017 2018 publication-title: Adv. Funct. Mater. Biosens. Bioelectron. Nat. Biomed. Eng. – volume: 9 32 start-page: 5929 year: 2015 2020 publication-title: ACS Nano Adv. Mater. – volume: 5 start-page: 1804 year: 2020 publication-title: ACS Sens. – volume: 70 9 year: 2021 2021 publication-title: Biomed. Signal Process. Control Adv. Opt. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interf. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 20 start-page: 3953 year: 2020 publication-title: Sensors – volume: 25 383 18 start-page: 3806 1009 1097 year: 2015 2005 2008 publication-title: Adv. Funct. Mater. Anal. Bioanal. Chem. Adv. Funct. Mater. – volume: 19 start-page: 969 year: 2020 publication-title: Nat. Mater. – volume: 1 start-page: 862 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 11 114 10 start-page: 4683 5894 1821 year: 2020 2017 2019 publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA Nat. Commun. – volume: 17 2 start-page: 3538 1637 year: 2007 2010 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interf. – volume: 3 year: 2020 publication-title: Adv. Intell. Syst. – volume: 46 year: 2021 publication-title: Addit. Manuf. – volume: 31 92 year: 2019 2022 publication-title: Adv. Mater. Nano Energy – volume: 9 year: 2015 publication-title: Biomicrofluidics – volume: 34 34 10 12 start-page: 535 year: 2022 2022 2021 2021 2021 publication-title: Adv. Mater. Adv. Mater. Adv. Healthcare Mater. Nat. Biomed. Eng. Nat. Commun. – volume: 32 136 8 12 start-page: 91 1951 4797 year: 2022 2019 2016 2020 publication-title: Adv. Funct. Mater. Biosens. Bioelectron. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interf. – volume: 28 5 7 30 start-page: 9227 1919 year: 2021 2020 2020 2020 publication-title: Cellulose ACS Omega Adv. Electron. Mater. Adv. Funct. Mater. – volume: 323 143 start-page: 610 63 year: 2009 2019 publication-title: Science Carbon – volume: 218 year: 2020 publication-title: Talanta – volume: 4 9 year: 2018 2022 publication-title: Sci. Adv. Adv. Sci. – volume: 3 start-page: 1981 year: 2020 publication-title: Matter – volume: 24 start-page: 3326 year: 2012 publication-title: Adv. Mater. – volume: 18 start-page: 1112 year: 2021 publication-title: Nat. Methods – volume: 4 start-page: 9381 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 6 4 211 start-page: 1918 302 year: 2021 2021 2021 2021 publication-title: Adv. Healthcare Mater. ACS Sens. Nat. Electron. Composites, Part B – volume: 4 start-page: 2613 year: 2021 publication-title: Matter – volume: 12 93 565 12 start-page: 219 509 361 521 year: 2017 2017 2019 2018 publication-title: Nat. Protoc. Neuron Nature IEEE Trans Biomed Circuits Syst – volume: 56 60 year: 2017 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 12 7 start-page: 257 year: 2018 2021 publication-title: IEEE Trans Biomed Circuits Syst Sci. Adv. – volume: 7 year: 2020 publication-title: Adv. Electron. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 15 year: 2015 publication-title: Sensors – volume: 572 start-page: 595 year: 2019 publication-title: Nature – volume: 48 start-page: 2565 year: 2015 publication-title: Acc. Chem. Res. – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 20 year: 2020 publication-title: Appl. Mater. Today – volume: 428 32 year: 2022 2022 publication-title: Chem. Eng. J. Adv. Funct. Mater. – volume: 52 start-page: 2925 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 5 9 start-page: 8836 114 year: 2017 2018 publication-title: ACS Sustainable Chem. Eng. Mater. Today Energy – volume: 25 start-page: 5916 year: 2013 publication-title: Adv. Mater. – volume: 25 start-page: 5288 year: 2020 publication-title: Molecules – volume: 3 start-page: 921 year: 2021 publication-title: ACS Mater. Lett. – volume: 1 year: 2019 publication-title: Int J Pharm X – volume: 13 175 29 start-page: 2868 year: 2021 2021 2017 publication-title: Nanoscale Biosens. Bioelectron. Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 118 start-page: 488 year: 2019 publication-title: TrAC, Trends Anal. Chem. – volume: 596 start-page: 519 year: 2021 publication-title: Nature – volume: 25 start-page: 3203 year: 2015 publication-title: Adv. Funct. Mater. – volume: 244 start-page: 114 year: 2015 publication-title: J. Neurosci Methods – volume: 7 66 start-page: 2437 year: 2022 2021 publication-title: Adv. Mater. Technol. Sci. Bull. – volume: 4 start-page: 574 year: 2021 publication-title: Adv. Compos. Hybrid Mater. – volume: 6 24 start-page: 276 year: 2022 2021 publication-title: Nat. Biomed. Eng. iScience – volume: 13 59 40 start-page: 2888 73 471 year: 2019 2011 2011 publication-title: ACS Nano J. Sol‐Gel Sci. Technol. Chem. Soc. Rev. – volume: 13 7 12 start-page: 1048 399 810 year: 2018 2019 2021 publication-title: Nat. Nanotechnol. Front Chem Micromachines – volume: 20 start-page: 66 year: 2020 publication-title: Nano Lett. – volume: 49 start-page: 655 year: 2018 publication-title: Nano Energy – volume: 11 65 start-page: 2317 899 year: 2019 2020 publication-title: ACS Appl. Mater. Interf. Sci. Bull. – volume: 32 start-page: 363 year: 2014 publication-title: Trends Biotechnol. – volume: 6 start-page: 4098 year: 2021 publication-title: ACS Sens. – volume: 28 start-page: 9512 year: 2016 publication-title: Adv. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interf. – volume: 22 31 5 797 start-page: 1996 666 year: 2022 2020 2013 2019 publication-title: Sensors Adv. Funct. Mater. ACS Appl. Mater. Interf. J. Alloys Compd. – volume: 107 8 start-page: 2065 1037 year: 2019 2021 publication-title: Proc. IEEE Mater Horiz. – volume: 15 102 start-page: 2911 year: 2021 2022 publication-title: ACS Nano Nano Energy – volume: 1 17 start-page: 4326 180 year: 2016 2018 publication-title: ChemistrySelect Nat. Mater. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 27 14 21 start-page: 87 772 year: 2017 2015 2011 publication-title: Adv. Funct. Mater. Nano Energy Adv. Funct. Mater. – volume: 174 year: 2021 publication-title: Biosens. Bioelectron. – volume: 312 year: 2020 publication-title: Sens. Actuators, A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interf. – volume: 2013 year: 2013 publication-title: J. Polym. – volume: 5 start-page: 772 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 115 18 start-page: 326 year: 2018 2018 publication-title: Proc. Natl. Acad. Sci. USA Nano Lett. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 397 63 start-page: 126 2385 2620 year: 2021 2021 2014 publication-title: Biosensors Lancet IEEE Trans. Instrum. Meas. – volume: 4 10 6 21 start-page: 5289 436 795 year: 2016 2016 2020 2021 publication-title: J. Mater. Chem. C ACS Nano Adv. Electron. Mater. Lab Chip – volume: 2 start-page: 33 year: 2019 publication-title: InfoMat – volume: 11 start-page: 2396 year: 2011 publication-title: Nano Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 143 year: 2019 publication-title: Biosens. Bioelectron. – volume: 350 start-page: 313 year: 2015 publication-title: Science – volume: 27 year: 2018 publication-title: Smart Mater. Struct. – volume: 9 20 start-page: 1670 year: 2021 2021 publication-title: Adv. Opt. Mater. Nat. Mater. – volume: 1 start-page: 1011 year: 2016 publication-title: ACS Sens. – volume: 50 26 24 29 start-page: 79 3451 5427 year: 2018 2014 2014 2018 publication-title: Nano Energy Adv. Mater. Adv. Funct. Mater. Nanotechnology – volume: 29 start-page: 3126 year: 2017 publication-title: Chem. Mater. – volume: 8 33 31 year: 2021 2021 2021 publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Funct. Mater. – volume: 5 9 590 start-page: 4007 929 410 year: 2014 2010 2021 publication-title: Nat. Commun. Nat. Mater. Nature – volume: 368 start-page: 223 year: 2019 publication-title: Chem. Eng. J. – volume: 29 20 start-page: 1393 4069 year: 2002 2010 publication-title: J. Archaeol Sci Adv. Funct. Mater. – volume: 31 65 7 48 start-page: 850 538 year: 2019 2019 2022 2002 publication-title: Adv. Mater. Nano Energy Nat. Rev. Mater. ASAIO J. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 7 8 9 560 start-page: 214 year: 2019 2022 2017 2018 publication-title: Adv. Opt. Mater. Sci. Adv. NPG Asia Mater. Nature – volume: 2 start-page: 1492 year: 2014 publication-title: ACS Sustainable Chem. Eng. – volume: 59 start-page: 904 year: 2012 publication-title: J Chin Chem Soc – volume: 17 21 119 53 27 start-page: 1284 3 159 year: 2021 2021 2019 2020 2017 publication-title: Small Chem. Rec. Chem. Rev. Acc. Chem. Res. Adv. Funct. Mater. – volume: 1179 year: 2021 publication-title: Anal. Chim. Acta – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 121 33 11 start-page: 1854 year: 2021 2021 2021 publication-title: Chem. Rev. Adv. Mater. Nanomaterials – volume: 125 3 start-page: 1832 year: 2022 2018 publication-title: Prog. Polym. Sci. ACS Energy Lett. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 135 start-page: 1458 year: 2017 publication-title: Circulation – volume: 5 year: 2019 publication-title: Adv. Mater. Technol. – volume: 5 start-page: 345 year: 2005 publication-title: IEEE Sens. J. – volume: 4 33 7 start-page: 1925 887 year: 2019 2021 2022 publication-title: ACS Sens. Adv. Mater. Nat. Rev. Mater. – volume: 7 start-page: 5193 year: 2019 publication-title: J. Mater. Chem. C – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 12 7 34 2 start-page: 1798 year: 2021 2018 2022 2017 publication-title: Nat. Commun. Adv. Healthcare Mater. Adv. Mater. Nat. Rev. Mater. – volume: 19 start-page: 679 year: 2020 publication-title: Nat. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interf. – volume: 185 year: 2021 publication-title: Biosens. Bioelectron. – volume: 3 89 start-page: 234 year: 2014 2006 publication-title: Electronics Appl. Phys. Lett. – volume: 14 91 start-page: 263 529 year: 2011 2016 publication-title: Nat. Neurosci. Neuron – volume: 101 start-page: 9966 year: 2004 publication-title: Proc Natl Acad Sci U S A. – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 7 85 start-page: 2037 year: 2022 2021 publication-title: ACS Sens. Nano Energy – volume: 1 start-page: 160 year: 2018 publication-title: Nat. Electron. – volume: 12 89 119 13 start-page: 245 9303 1391 year: 2022 2021 2019 2022 publication-title: Biosensors Nano Energy Chem. Rev. Nat. Commun. – volume: 21 14 360 start-page: 7172 1390 998 year: 2021 2020 2018 publication-title: Sensors ACS Nano Science – volume: 96 start-page: 622 year: 2016 publication-title: Carbon – volume: 6 30 start-page: 4043 year: 2018 2019 publication-title: J. Mater. Chem. B Adv. Funct. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interf. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 6 5 year: 2020 2019 publication-title: Sci. Adv. Sci. Adv. – volume: 3 start-page: 664 year: 2020 publication-title: Nat. Electron. – volume: 3 5 year: 2017 2019 publication-title: Sci. Adv. Sci. Adv. – volume: 7 start-page: 1996 year: 2022 publication-title: ACS Sens. – volume: 114 12 21 start-page: 938 7093 year: 2014 2013 2021 publication-title: Chem. Rev. Nat. Mater. Nano Lett. – volume: 94 16 25 start-page: 2707 year: 2009 2020 2013 publication-title: Appl. Phys. Lett. Small Adv. Mater. – volume: 122 22 7 1 start-page: 4552 630 99 year: 2022 2022 2021 2017 publication-title: Chem. Rev. Sensors Adv. Electron. Mater. Substantia – volume: 555 10 start-page: 83 year: 2018 2021 publication-title: Nature Adv. Healthcare Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 9 11 start-page: 4480 3231 year: 2018 2018 publication-title: Nat. Commun. Energy Environ. Sci. – volume: 3 start-page: 37 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 4 start-page: 207 year: 2020 publication-title: Nat. Biomed. Eng. – volume: 7 start-page: 71 year: 2016 publication-title: Front Physiol – ident: e_1_2_9_11_2 doi: 10.1002/adhm.201800275 – ident: e_1_2_9_170_1 doi: 10.1002/adfm.201910547 – ident: e_1_2_9_173_3 doi: 10.1038/s41578-022-00460-x – ident: e_1_2_9_18_1 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_9_184_1 doi: 10.1073/pnas.1718721115 – ident: e_1_2_9_64_1 doi: 10.1016/j.talanta.2020.121153 – ident: e_1_2_9_111_1 doi: 10.1002/adfm.201500856 – ident: e_1_2_9_5_4 doi: 10.1002/smtd.202100771 – ident: e_1_2_9_102_4 doi: 10.1021/acs.nanolett.9b02014 – ident: e_1_2_9_146_1 doi: 10.1002/adfm.200601239 – ident: e_1_2_9_5_1 doi: 10.1002/adsu.202000056 – ident: e_1_2_9_156_2 doi: 10.1002/adom.202002206 – ident: e_1_2_9_50_1 doi: 10.1002/aelm.202100753 – ident: e_1_2_9_3_3 doi: 10.1038/s41578-022-00427-y – ident: e_1_2_9_12_1 doi: 10.1038/s41467-020-18503-8 – ident: e_1_2_9_152_1 doi: 10.1016/j.bios.2019.111617 – ident: e_1_2_9_190_1 doi: 10.3390/s20143953 – ident: e_1_2_9_191_1 doi: 10.1161/CIRCULATIONAHA.116.025037 – ident: e_1_2_9_16_3 doi: 10.1038/am.2017.189 – ident: e_1_2_9_163_1 doi: 10.1038/s41928-018-0041-0 – ident: e_1_2_9_181_2 doi: 10.1016/S0140-6736(21)00684-X – ident: e_1_2_9_92_1 doi: 10.1016/j.addma.2021.102088 – ident: e_1_2_9_132_1 doi: 10.1021/acssensors.0c00604 – ident: e_1_2_9_98_2 doi: 10.1126/science.aah4496 – ident: e_1_2_9_130_1 doi: 10.1038/s41378-020-00208-z – ident: e_1_2_9_1_1 doi: 10.1002/adma.202109357 – ident: e_1_2_9_29_3 doi: 10.1002/adma.201300794 – ident: e_1_2_9_126_1 doi: 10.1002/adma.202008539 – ident: e_1_2_9_184_2 doi: 10.1021/acs.nanolett.7b04184 – ident: e_1_2_9_1_3 doi: 10.1002/adhm.202100460 – ident: e_1_2_9_46_1 doi: 10.1126/science.1167130 – ident: e_1_2_9_36_1 doi: 10.1002/aisy.202000159 – ident: e_1_2_9_154_1 doi: 10.1126/sciadv.1601314 – ident: e_1_2_9_206_1 doi: 10.3390/s151128889 – ident: e_1_2_9_154_2 doi: 10.1126/sciadv.aaw7846 – ident: e_1_2_9_88_1 doi: 10.1021/acsami.1c15636 – ident: e_1_2_9_109_1 doi: 10.1016/j.cej.2021.131171 – ident: e_1_2_9_1_5 doi: 10.1038/s41467-020-20803-y – ident: e_1_2_9_1_2 doi: 10.1002/adma.202201608 – ident: e_1_2_9_87_3 doi: 10.3390/nano11071854 – ident: e_1_2_9_186_1 doi: 10.1038/s41551-017-0154-1 – ident: e_1_2_9_7_4 doi: 10.1002/adfm.201910292 – ident: e_1_2_9_122_2 doi: 10.1016/j.matt.2021.09.012 – ident: e_1_2_9_172_1 doi: 10.1002/adfm.201805754 – ident: e_1_2_9_159_1 doi: 10.1109/JPROC.2019.2930808 – ident: e_1_2_9_14_3 doi: 10.1126/science.aao0098 – ident: e_1_2_9_9_1 doi: 10.1002/adma.201905527 – ident: e_1_2_9_145_1 doi: 10.1038/nature16521 – ident: e_1_2_9_173_1 doi: 10.1021/acssensors.9b00891 – ident: e_1_2_9_124_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_9_208_1 doi: 10.1371/journal.pone.0038436 – ident: e_1_2_9_98_1 doi: 10.1126/science.1182383 – ident: e_1_2_9_85_1 doi: 10.1126/sciadv.aaz6767 – ident: e_1_2_9_110_1 doi: 10.1002/smll.201801657 – ident: e_1_2_9_194_1 doi: 10.1126/sciadv.1601966 – ident: e_1_2_9_71_1 doi: 10.1021/cg0704753 – ident: e_1_2_9_9_2 doi: 10.3390/s20195701 – ident: e_1_2_9_29_2 doi: 10.1002/smll.202000472 – ident: e_1_2_9_171_1 doi: 10.3389/fphys.2016.00071 – ident: e_1_2_9_102_2 doi: 10.1002/adma.201505739 – ident: e_1_2_9_131_1 doi: 10.1002/adhm.201700024 – ident: e_1_2_9_150_1 doi: 10.1002/adma.201808138 – ident: e_1_2_9_78_3 doi: 10.1021/acs.chemrev.8b00016 – ident: e_1_2_9_87_1 doi: 10.1021/acs.chemrev.0c01177 – ident: e_1_2_9_11_3 doi: 10.1002/adma.202108607 – volume: 8 year: 2022 ident: e_1_2_9_178_1 publication-title: Sci. Adv. – ident: e_1_2_9_23_3 doi: 10.3390/mi12070810 – ident: e_1_2_9_117_1 doi: 10.1002/adfm.202006612 – ident: e_1_2_9_134_1 doi: 10.1021/acssensors.2c00787 – ident: e_1_2_9_104_1 doi: 10.1002/adfm.201605657 – ident: e_1_2_9_125_1 doi: 10.1021/acs.nanolett.9b02978 – ident: e_1_2_9_142_1 doi: 10.1021/acssensors.1c01614 – ident: e_1_2_9_38_2 doi: 10.1002/adma.201504245 – ident: e_1_2_9_75_1 doi: 10.1002/anie.201209676 – ident: e_1_2_9_7_3 doi: 10.1002/aelm.202000944 – ident: e_1_2_9_16_4 doi: 10.1038/s41586-018-0390-x – ident: e_1_2_9_60_3 doi: 10.1002/aelm.202100591 – ident: e_1_2_9_52_1 doi: 10.3390/s22051996 – ident: e_1_2_9_100_2 doi: 10.1038/nmat2834 – ident: e_1_2_9_52_4 doi: 10.1016/j.jallcom.2019.05.145 – ident: e_1_2_9_103_4 doi: 10.1088/1361-6528/aaa855 – ident: e_1_2_9_101_1 doi: 10.1002/adom.202001693 – ident: e_1_2_9_8_2 doi: 10.1016/j.isci.2020.101966 – ident: e_1_2_9_118_1 doi: 10.1021/acsnano.0c09015 – ident: e_1_2_9_173_2 doi: 10.1002/adma.202102332 – ident: e_1_2_9_123_2 doi: 10.1063/1.2416001 – ident: e_1_2_9_140_1 doi: 10.1021/acssensors.2c00830 – ident: e_1_2_9_165_1 doi: 10.1016/j.sna.2020.112144 – ident: e_1_2_9_42_1 doi: 10.1038/s41586-019-1493-8 – ident: e_1_2_9_106_1 doi: 10.1021/acsami.7b04687 – ident: e_1_2_9_158_2 doi: 10.1021/acssensors.1c00281 – ident: e_1_2_9_112_2 doi: 10.1016/j.nanoen.2021.106282 – ident: e_1_2_9_17_2 doi: 10.1016/j.neuron.2016.12.031 – ident: e_1_2_9_204_1 doi: 10.1038/s41467-018-06879-7 – ident: e_1_2_9_122_1 doi: 10.1038/s41467-021-27066-1 – ident: e_1_2_9_202_1 doi: 10.1016/j.jneumeth.2014.07.025 – ident: e_1_2_9_2_1 doi: 10.1039/C8TB01063C – ident: e_1_2_9_140_2 doi: 10.1016/j.nanoen.2021.106031 – ident: e_1_2_9_58_1 doi: 10.1002/adma.201605056 – ident: e_1_2_9_116_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_9_149_1 doi: 10.1016/j.snb.2020.128936 – ident: e_1_2_9_157_2 doi: 10.1016/j.scib.2021.09.014 – ident: e_1_2_9_28_1 doi: 10.1021/acs.chemmater.7b00181 – ident: e_1_2_9_97_2 doi: 10.1016/j.jallcom.2021.160954 – ident: e_1_2_9_177_3 doi: 10.1038/s41551-018-0194-1 – ident: e_1_2_9_147_1 doi: 10.1038/s41563-020-0638-3 – ident: e_1_2_9_151_3 doi: 10.1038/s41586-021-03251-6 – ident: e_1_2_9_78_5 doi: 10.1002/adfm.201701117 – ident: e_1_2_9_68_2 doi: 10.1002/adfm.201001031 – ident: e_1_2_9_163_2 doi: 10.1002/adhm.201800074 – ident: e_1_2_9_114_1 doi: 10.1016/j.nanoen.2018.05.014 – ident: e_1_2_9_17_1 doi: 10.1038/nprot.2016.155 – ident: e_1_2_9_55_1 doi: 10.1016/j.nanoen.2019.05.019 – ident: e_1_2_9_103_1 doi: 10.1016/j.nanoen.2018.05.020 – ident: e_1_2_9_183_1 doi: 10.1038/s41551-021-00719-8 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-021-25719-9 – ident: e_1_2_9_77_3 doi: 10.1002/adma.201703787 – ident: e_1_2_9_187_1 doi: 10.1038/nmat4290 – ident: e_1_2_9_73_1 doi: 10.1021/sc500161b – ident: e_1_2_9_63_1 doi: 10.1016/j.progpolymsci.2021.101474 – ident: e_1_2_9_180_1 doi: 10.1002/adma.202202622 – ident: e_1_2_9_83_1 doi: 10.1002/slct.201601043 – ident: e_1_2_9_109_2 doi: 10.1002/adfm.202111747 – ident: e_1_2_9_158_4 doi: 10.1016/j.compositesb.2021.108621 – ident: e_1_2_9_188_1 doi: 10.1038/nnano.2006.131 – ident: e_1_2_9_21_1 doi: 10.1016/j.aca.2021.338643 – ident: e_1_2_9_66_2 doi: 10.1002/advs.202104404 – ident: e_1_2_9_88_3 doi: 10.1038/s41427-022-00357-9 – ident: e_1_2_9_151_1 doi: 10.1038/ncomms5007 – ident: e_1_2_9_14_1 doi: 10.3390/s21217172 – ident: e_1_2_9_168_1 doi: 10.1021/acsanm.1c00858 – ident: e_1_2_9_137_2 doi: 10.1038/s41551-022-00916-z – ident: e_1_2_9_24_1 doi: 10.1038/s41467-020-14439-1 – ident: e_1_2_9_128_1 doi: 10.3390/molecules25132970 – ident: e_1_2_9_50_2 doi: 10.1002/adma.202004115 – ident: e_1_2_9_45_1 doi: 10.1038/nmat3064 – ident: e_1_2_9_104_3 doi: 10.1002/adfm.201001397 – ident: e_1_2_9_160_1 doi: 10.1021/acsami.8b19425 – ident: e_1_2_9_6_3 doi: 10.1038/nature20102 – ident: e_1_2_9_139_1 doi: 10.1021/acssensors.6b00356 – ident: e_1_2_9_164_1 doi: 10.1016/j.nanoen.2021.106611 – ident: e_1_2_9_176_1 doi: 10.1088/2058-8585/1/2/023002 – ident: e_1_2_9_137_1 doi: 10.1038/s41587-019-0321-x – ident: e_1_2_9_78_2 doi: 10.1002/tcr.202000114 – ident: e_1_2_9_203_1 doi: 10.1038/s41551-017-0051 – ident: e_1_2_9_53_1 doi: 10.2109/jcersj2.15316 – ident: e_1_2_9_89_1 doi: 10.1002/adma.201400334 – ident: e_1_2_9_79_3 doi: 10.1002/aelm.202000641 – ident: e_1_2_9_93_1 doi: 10.1021/acsnano.8b06492 – ident: e_1_2_9_95_1 doi: 10.1002/inf2.12047 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201801072 – ident: e_1_2_9_151_2 doi: 10.1038/nmat2879 – ident: e_1_2_9_112_3 doi: 10.1021/acs.chemrev.8b00599 – ident: e_1_2_9_56_1 doi: 10.1016/j.snb.2018.02.060 – ident: e_1_2_9_11_1 doi: 10.1038/s41467-021-22047-w – ident: e_1_2_9_48_1 doi: 10.1002/adfm.202109046 – ident: e_1_2_9_44_1 doi: 10.1021/nl200758b – ident: e_1_2_9_6_2 doi: 10.1002/adma.202200682 – ident: e_1_2_9_46_2 doi: 10.1016/j.carbon.2018.11.008 – ident: e_1_2_9_158_3 doi: 10.1038/s41928-021-00556-2 – ident: e_1_2_9_79_4 doi: 10.1039/D0LC01007C – ident: e_1_2_9_204_2 doi: 10.1039/C8EE01468J – ident: e_1_2_9_105_1 doi: 10.1002/adma.201603143 – ident: e_1_2_9_138_1 doi: 10.1016/j.tibtech.2014.04.005 – ident: e_1_2_9_156_1 doi: 10.1016/j.bspc.2021.103017 – ident: e_1_2_9_17_3 doi: 10.1038/s41586-018-0823-6 – ident: e_1_2_9_100_3 doi: 10.1007/s00339-022-05320-7 – ident: e_1_2_9_161_1 doi: 10.1088/1361-665X/aac0b8 – ident: e_1_2_9_78_1 doi: 10.1002/smll.202103125 – ident: e_1_2_9_20_1 doi: 10.1038/s41467-021-26314-8 – ident: e_1_2_9_144_1 doi: 10.1063/1.1854192 – ident: e_1_2_9_120_1 doi: 10.1073/pnas.1909532117 – ident: e_1_2_9_51_1 doi: 10.1002/adfm.201805599 – ident: e_1_2_9_169_1 doi: 10.1002/admt.202200010 – ident: e_1_2_9_79_2 doi: 10.1021/acsnano.5b05313 – ident: e_1_2_9_16_2 doi: 10.1126/sciadv.abm7851 – ident: e_1_2_9_25_1 doi: 10.1021/cr400625j – ident: e_1_2_9_84_1 doi: 10.1039/C8CC07527A – ident: e_1_2_9_12_3 doi: 10.1038/s41467-019-09851-1 – ident: e_1_2_9_29_1 doi: 10.1063/1.3099052 – ident: e_1_2_9_179_2 doi: 10.1002/adhm.202002255 – ident: e_1_2_9_98_3 doi: 10.1002/adma.202105306 – ident: e_1_2_9_15_2 doi: 10.1126/sciadv.abg2507 – ident: e_1_2_9_67_1 doi: 10.1038/s41928-018-0043-y – ident: e_1_2_9_201_1 doi: 10.1038/ncomms6028 – ident: e_1_2_9_148_1 doi: 10.1038/s41563-020-0703-y – ident: e_1_2_9_57_2 doi: 10.1002/anie.202006402 – ident: e_1_2_9_143_1 doi: 10.1016/j.bios.2021.113265 – ident: e_1_2_9_5_3 doi: 10.1021/acs.analchem.1c05309 – ident: e_1_2_9_112_4 doi: 10.1038/s41467-022-29087-w – ident: e_1_2_9_48_4 doi: 10.1021/acsami.9b20785 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201503682 – ident: e_1_2_9_104_2 doi: 10.1016/j.nanoen.2015.01.004 – ident: e_1_2_9_72_1 doi: 10.1039/C6TA03146C – ident: e_1_2_9_180_2 doi: 10.1002/adfm.202203585 – ident: e_1_2_9_5_2 doi: 10.1002/adma.201501810 – ident: e_1_2_9_22_1 doi: 10.1002/adma.201200359 – ident: e_1_2_9_80_1 doi: 10.1002/aelm.201500159 – ident: e_1_2_9_76_1 doi: 10.1002/adma.201302435 – ident: e_1_2_9_159_2 doi: 10.1039/D0MH01818J – ident: e_1_2_9_3_4 doi: 10.1097/00002480-200209000-00017 – ident: e_1_2_9_32_1 doi: 10.1039/D0NR05486K – ident: e_1_2_9_102_5 doi: 10.1002/adfm.202008006 – ident: e_1_2_9_4_1 doi: 10.1002/adfm.201701269 – ident: e_1_2_9_155_1 doi: 10.1016/j.nanoen.2020.105648 – ident: e_1_2_9_74_1 doi: 10.1016/j.carbon.2015.09.108 – ident: e_1_2_9_19_1 doi: 10.1126/science.aau0780 – ident: e_1_2_9_13_1 doi: 10.1038/s41551-020-0518-9 – year: 2021 ident: e_1_2_9_1_4 publication-title: Nat. Biomed. Eng. – ident: e_1_2_9_40_1 doi: 10.1002/adma.201104672 – ident: e_1_2_9_41_2 doi: 10.1002/adma.201907288 – ident: e_1_2_9_54_1 doi: 10.1039/C9TC00961B – ident: e_1_2_9_181_1 doi: 10.3390/bios11040126 – ident: e_1_2_9_135_1 doi: 10.1126/sciadv.abg9614 – ident: e_1_2_9_14_2 doi: 10.1021/acsnano.9b07165 – ident: e_1_2_9_66_1 doi: 10.1126/sciadv.aar3921 – ident: e_1_2_9_207_4 doi: 10.1007/s11664-011-1834-3 – ident: e_1_2_9_60_2 doi: 10.3390/s22020630 – ident: e_1_2_9_121_1 doi: 10.1016/j.apmt.2020.100699 – ident: e_1_2_9_174_1 doi: 10.1063/1.4921039 – ident: e_1_2_9_193_1 doi: 10.1126/science.1260318 – ident: e_1_2_9_93_3 doi: 10.1039/c1cs90001c – ident: e_1_2_9_82_1 doi: 10.1002/adma.201906989 – ident: e_1_2_9_133_1 doi: 10.1016/j.matt.2021.06.018 – ident: e_1_2_9_37_1 doi: 10.1002/adfm.201800110 – ident: e_1_2_9_196_1 doi: 10.1038/nmeth.f.324 – ident: e_1_2_9_61_1 doi: 10.1038/nature25494 – ident: e_1_2_9_155_3 doi: 10.1007/s12274-022-4122-z – ident: e_1_2_9_146_2 doi: 10.1021/am100154e – ident: e_1_2_9_101_2 doi: 10.1038/s41563-021-01093-1 – ident: e_1_2_9_68_1 doi: 10.1006/jasc.2001.0779 – ident: e_1_2_9_77_2 doi: 10.1016/j.bios.2020.112878 – ident: e_1_2_9_78_4 doi: 10.1021/acs.accounts.9b00347 – ident: e_1_2_9_141_1 doi: 10.1016/j.matt.2020.09.027 – ident: e_1_2_9_207_1 doi: 10.1039/C5EE01593F – volume: 31 year: 2021 ident: e_1_2_9_99_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_3_1 doi: 10.1002/adma.201904765 – ident: e_1_2_9_26_1 doi: 10.1002/jccs.201100628 – ident: e_1_2_9_119_1 doi: 10.3390/s22062154 – ident: e_1_2_9_207_2 doi: 10.1038/s41467-018-07764-z – ident: e_1_2_9_102_1 doi: 10.1021/acsnano.5b00599 – ident: e_1_2_9_15_1 doi: 10.1109/TBCAS.2018.2799623 – ident: e_1_2_9_25_2 doi: 10.1038/nmat3755 – ident: e_1_2_9_103_3 doi: 10.1002/adfm.201400712 – ident: e_1_2_9_25_3 doi: 10.1021/acs.nanolett.1c01039 – ident: e_1_2_9_200_1 doi: 10.1038/nn.2730 – ident: e_1_2_9_115_1 doi: 10.1016/j.nanoen.2020.104767 – ident: e_1_2_9_113_2 doi: 10.1016/j.mtener.2018.05.006 – ident: e_1_2_9_87_2 doi: 10.1002/adma.202006582 – ident: e_1_2_9_52_2 doi: 10.1002/adfm.202006273 – ident: e_1_2_9_96_1 doi: 10.1002/admt.201900728 – ident: e_1_2_9_158_1 doi: 10.1002/adhm.202100103 – ident: e_1_2_9_85_2 doi: 10.1126/sciadv.aav3097 – ident: e_1_2_9_30_2 doi: 10.1021/acsami.9b11774 – volume: 1 start-page: 99 year: 2017 ident: e_1_2_9_60_4 publication-title: Substantia – ident: e_1_2_9_107_1 doi: 10.1126/science.aaa9306 – ident: e_1_2_9_91_1 doi: 10.1002/aelm.202100178 – ident: e_1_2_9_9_3 doi: 10.1021/acsami.0c19621 – ident: e_1_2_9_12_2 doi: 10.1073/pnas.1705509114 – ident: e_1_2_9_90_1 doi: 10.1039/D1TA05586K – ident: e_1_2_9_31_1 doi: 10.1021/acsami.5b02487 – ident: e_1_2_9_60_1 doi: 10.1021/acs.chemrev.1c00363 – ident: e_1_2_9_127_1 doi: 10.1016/j.bios.2020.112750 – ident: e_1_2_9_118_2 doi: 10.1016/j.nanoen.2022.107687 – ident: e_1_2_9_47_1 doi: 10.1038/s41586-021-03753-3 – ident: e_1_2_9_49_1 doi: 10.1038/s41524-022-00731-9 – ident: e_1_2_9_150_2 doi: 10.1016/j.nanoen.2021.106694 – ident: e_1_2_9_48_2 doi: 10.1016/j.bios.2019.04.034 – ident: e_1_2_9_59_1 doi: 10.3390/molecules25225288 – ident: e_1_2_9_195_1 doi: 10.1038/nbt.3093 – ident: e_1_2_9_136_1 doi: 10.1016/j.bios.2020.112828 – ident: e_1_2_9_23_1 doi: 10.1038/s41565-018-0226-8 – ident: e_1_2_9_108_1 doi: 10.1021/acsami.9b03261 – ident: e_1_2_9_207_5 doi: 10.1073/pnas.1802064115 – ident: e_1_2_9_70_1 doi: 10.1016/j.ijpx.2019.100023 – ident: e_1_2_9_155_2 doi: 10.1002/advs.201800496 – ident: e_1_2_9_181_3 doi: 10.1109/TIM.2014.2312512 – ident: e_1_2_9_52_3 doi: 10.1021/am404872j – ident: e_1_2_9_8_1 doi: 10.1038/s41551-021-00833-7 – ident: e_1_2_9_112_1 doi: 10.3390/bios12040245 – ident: e_1_2_9_10_1 doi: 10.1038/s41563-020-0679-7 – ident: e_1_2_9_102_6 doi: 10.1002/adfm.202001296 – ident: e_1_2_9_97_1 doi: 10.1186/s11671-015-0748-z – ident: e_1_2_9_39_1 doi: 10.1021/acs.accounts.5b00133 – ident: e_1_2_9_3_2 doi: 10.1016/j.nanoen.2019.104039 – ident: e_1_2_9_81_1 doi: 10.1021/ja0571592 – ident: e_1_2_9_23_2 doi: 10.3389/fchem.2019.00399 – ident: e_1_2_9_27_1 doi: 10.1002/adhm.202002236 – ident: e_1_2_9_56_2 doi: 10.1002/adma.202104958 – ident: e_1_2_9_209_1 doi: 10.1002/smll.202201111 – ident: e_1_2_9_175_1 doi: 10.1002/adma.201400633 – volume: 27 year: 2017 ident: e_1_2_9_177_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_167_1 doi: 10.1021/acsami.1c05291 – ident: e_1_2_9_179_1 doi: 10.1021/acssensors.9b01127 – ident: e_1_2_9_185_1 doi: 10.1038/natrevmats.2016.63 – ident: e_1_2_9_2_2 doi: 10.1002/adfm.201906713 – ident: e_1_2_9_10_2 doi: 10.1016/j.cej.2021.130921 – ident: e_1_2_9_17_4 doi: 10.1109/TBCAS.2018.2802443 – ident: e_1_2_9_160_2 doi: 10.1016/j.scib.2020.02.020 – ident: e_1_2_9_86_1 doi: 10.1021/acsmaterialslett.1c00246 – ident: e_1_2_9_197_1 doi: 10.1073/pnas.1909850116 – ident: e_1_2_9_43_1 doi: 10.1126/science.1157996 – ident: e_1_2_9_157_1 doi: 10.1002/admt.202101182 – ident: e_1_2_9_199_1 doi: 10.1073/pnas.1920073117 – ident: e_1_2_9_153_1 doi: 10.1021/acsami.0c10259 – ident: e_1_2_9_188_3 doi: 10.1038/ncomms2553 – ident: e_1_2_9_83_2 doi: 10.1038/nmat5045 – ident: e_1_2_9_35_1 doi: 10.1002/adfm.201501396 – ident: e_1_2_9_34_1 doi: 10.1002/aelm.202000780 – ident: e_1_2_9_200_2 doi: 10.1016/j.neuron.2016.06.034 – ident: e_1_2_9_7_2 doi: 10.1021/acsomega.9b03634 – ident: e_1_2_9_162_1 doi: 10.1007/s42114-021-00262-9 – ident: e_1_2_9_7_1 doi: 10.1007/s10570-021-04066-4 – ident: e_1_2_9_41_1 doi: 10.1021/acsnano.5b00599 – ident: e_1_2_9_113_1 doi: 10.1021/acssuschemeng.7b01617 – ident: e_1_2_9_166_1 doi: 10.1002/aelm.202001084 – ident: e_1_2_9_205_1 doi: 10.1038/s41551-018-0300-4 – ident: e_1_2_9_188_2 doi: 10.1126/sciadv.aat0626 – ident: e_1_2_9_9_4 doi: 10.1038/ncomms14997 – ident: e_1_2_9_93_2 doi: 10.1007/s10971-011-2465-0 – ident: e_1_2_9_144_2 doi: 10.1038/s41563-019-0435-z – ident: e_1_2_9_65_1 doi: 10.1002/adhm.202101548 – ident: e_1_2_9_79_1 doi: 10.1039/C6TC00387G – ident: e_1_2_9_88_2 doi: 10.1016/j.cej.2021.132779 – ident: e_1_2_9_182_1 doi: 10.3390/s20174861 – ident: e_1_2_9_210_1 doi: 10.1126/sciadv.1600955 – ident: e_1_2_9_100_1 doi: 10.1002/aelm.201600356 – ident: e_1_2_9_103_2 doi: 10.1002/adma.201305182 – ident: e_1_2_9_63_2 doi: 10.1021/acsenergylett.8b00928 – ident: e_1_2_9_94_1 doi: 10.1016/j.cej.2019.01.005 – ident: e_1_2_9_129_1 doi: 10.1016/j.trac.2019.06.014 – ident: e_1_2_9_192_1 doi: 10.1109/JSEN.2005.846173 – ident: e_1_2_9_33_1 doi: 10.1002/adhm.202002280 – ident: e_1_2_9_35_2 doi: 10.1007/s00216-005-0069-7 – ident: e_1_2_9_189_1 doi: 10.1038/s41598-018-24502-z – ident: e_1_2_9_48_3 doi: 10.1021/acsami.5b10160 – ident: e_1_2_9_177_2 doi: 10.1016/j.bios.2017.01.058 – ident: e_1_2_9_123_1 doi: 10.3390/electronics3020234 – ident: e_1_2_9_77_1 doi: 10.1039/D0NR08453K – ident: e_1_2_9_50_3 doi: 10.1002/adfm.202105459 – volume: 2013 year: 2013 ident: e_1_2_9_69_1 publication-title: J. Polym. – ident: e_1_2_9_35_3 doi: 10.1002/adfm.200701216 – ident: e_1_2_9_62_1 doi: 10.1021/accountsmr.0c00021 – ident: e_1_2_9_102_3 doi: 10.1038/s41467-018-05238-w – ident: e_1_2_9_11_4 doi: 10.1038/natrevmats.2016.93 – ident: e_1_2_9_16_1 doi: 10.1002/adom.201801521 – ident: e_1_2_9_207_3 doi: 10.1016/j.bios.2006.01.030 – ident: e_1_2_9_57_1 doi: 10.1002/anie.201709096 – ident: e_1_2_9_61_2 doi: 10.1002/adhm.202001916 – ident: e_1_2_9_198_1 doi: 10.1038/s41592-021-01238-9 |
SSID | ssj0031247 |
Score | 2.6529582 |
SecondaryResourceType | review_article |
Snippet | Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207879 |
SubjectTerms | Artificial intelligence Biocompatibility biocompatible materials Biomedical materials Biosensors Chemical sensors flexible biosensors Inorganic materials Internet of Things in‐sensor computing Nanotechnology Organic materials Temperature sensors transistors Wearable technology wearable/implantable devices |
Title | Biocompatible Material‐Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207879 https://www.ncbi.nlm.nih.gov/pubmed/37009995 https://www.proquest.com/docview/2832937538 https://www.proquest.com/docview/2794693718 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEICtqqf2AG15bSmVkZA4uZvEcZzl1lJWBXU5UCp6i_xEFdsEbbIXThw59jf2l3TGedAFISS4JfJYec14JsnMN4S8yIz0Kk41E0pKlsaGs9wmOdMTnwkXpS7lWO88e5-dnKfvLsTFnSr-lg8xfHBDywjrNRq40vX4JzS0vprjr4MkAScnsYIv5hnC848_DPwoDs4rdFcBn8UQvNVTG6NkvDp91Sv9FmquRq7B9UzvE9WfdJtx8uVg2egD8-0XnuP_XNUWudfFpfSwVaRtsubKHbJ5h1b4gPw4uqxCynpzqeeOzlQTtPfm-_URuEJLp8jWxBGQq-HtuFrUr-h0UV0NojU9DgkjtKnoJzAxLNsaI58YHi9uw3BYuKgqLX3bgywsPcMs-_Iz7fDqD8n59M3H1yesa-TADJd8wrjOFUaCRuQO4kcpVC6E5NbbxGbW8cgogyWuymusA068jZRxJvK5sZIrxx-R9bIq3RNCufMuS22cCR2nwk8mGtvYetgXmXa5GxHWP8jCdJRzbLYxL1o-c1LgHS6GOzwiLwf5ry3f44-Se71eFJ2d1wU2eoIAD7zGiDwfhsFC8beLKl21BBlk-CN2EGQet_o0HIrLEKKLEUmCVvzlHIqz2enpsLf7L5Oekg3Y5m3G8R5ZbxZL9wziqkbvB9u5BU-0HUY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD79KFAkZC4uRuNo7jhBsFVlvY7YG2glvkJ6rYJtUme-HEkSO_kV_CjPOABSEkuCXxWEnsmcwXe-YbQp6kRno1STQTSkqWTAxnmY0zpnOfChclLuGY77w4TGcnyev3oo8mxFyYlh9iWHBDywjfazRwXJAe_2ANrc-WuHcQx-DlZH6RXAqbdIiL3g4MUhzcV6ivAl6LIfVWz9sYxePN_pt-6TewuYldg_OZXie6f-w25uTj3rrRe-bTL4yO__VeN8i1DprS560u3SQXXHmLXP2JsPA2-bJ_WoWo9eZULx1dqCYo8LfPX_fBG1o6RXpNbAG5Gn6Qq1X9jE5X1dkgWtOXIWaENhV9B1aGmVtjpCiGGcZjaA7fLqpKSw96LgtLjzDQvvxAO4b1O-Rk-ur4xYx1tRyY4ZLnjOtMIRg0InMAIaVQmRCSW29jm1rHI6MMZrkqrzEVOPY2UsaZyGfGSq4c3yZbZVW6HUK58y5N7CQVepIIn-caK9l6OBepdpkbEdbPZGE6onOst7EsWormuMARLoYRHpGng_x5S_HxR8ndXjGKztTrAms9AcYDxzEij4dmMFLceVGlq9YggzT-yDwIMndbhRpuxWVA6WJE4qAWf3mG4mgxnw9n9_6l0yNyeXa8mBfzg8M398kVuM7bAORdstWs1u4BwKxGPwyG9B0XkSFk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOlFdhoYCRkDilm43jOOFGKVELuxWiVPQW-Ykqtkm1yV44ceTY39hf0hnnQReEkOAWxxPFsWcyX-KZbwh5kWjh5CRWAZdCBPFEsyA1URqozCXchrGNGeY7z_aT3cP43RE_upTF3_JDDD_c0DL8-xoN_NS48U_S0PpkjlsHUQROTmRXybU4AV-JsOjjQCDFwHv58irgtAJk3uppG8NovHr9qlv6DWuuQlfve_J1IvtRtyEnX7eWjdrS334hdPyfx7pNbnXAlL5uNekOuWLLu-TmJbrCe-TH9nHlY9abYzW3dCYbr77n38-2wRcamiO5JvaAXA2fx9WifkXzRXUyiNZ0x0eM0Kain8HGMG9rjATFsL54DN3-zUVlaehez2Rh6AGG2ZdfaMevfp8c5m8_vdkNukoOgWaCZQFTqUQoqHlqAUAKLlPOBTPORCYxloVaasxxlU5hInDkTCi11aFLtRFMWrZB1sqqtA8JZdbZJDaThKtJzF2WKaxj66DNE2VTOyJBv5CF7mjOsdrGvGgJmqMCZ7gYZnhEXg7ypy3Bxx8lN3u9KDpDrwus9AQID9zGiDwfusFEcd9FlrZaggyS-CPvIMg8aPVpuBUTHqPzEYm8VvxlDMXBbDodWo_-5aJn5PqHnbyY7u2_f0xuwGnWRh9vkrVmsbRPAGM16qk3owubmSAT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatible+Material-Based+Flexible+Biosensors%3A+From+Materials+Design+to+Wearable%2FImplantable+Devices+and+Integrated+Sensing+Systems&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Gang&rft.au=Lv%2C+Ziyu&rft.au=Batool%2C+Saima&rft.au=Li%2C+Ming-Zheng&rft.date=2023-07-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=27&rft.spage=e2207879&rft_id=info:doi/10.1002%2Fsmll.202207879&rft_id=info%3Apmid%2F37009995&rft.externalDocID=37009995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |