Co‐Solvent Engineering Contributing to Achieve High‐Performance Perovskite Solar Cells and Modules Based on Anti‐Solvent Free Technology

The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings to...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 28; pp. e2301323 - n/a
Main Authors Li, Gu, Wang, Zhen, Wang, Yuqi, Yang, Zhengchi, Dong, Pengyu, Feng, Yancong, Jiang, Yue, Feng, Shien‐Ping, Zhou, Guofu, Liu, Jun‐Ming, Gao, Jinwei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202301323

Cover

Abstract The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs. A facile and effective co‐solvent engineering strategy is applied to obtain high quality perovskite film and achieve optimal PCE over 20% and 16% for devices with small area and 5 × 5 cm module, respectively.
AbstractList The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.
The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.
The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs.
The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs. A facile and effective co‐solvent engineering strategy is applied to obtain high quality perovskite film and achieve optimal PCE over 20% and 16% for devices with small area and 5 × 5 cm module, respectively.
Author Dong, Pengyu
Jiang, Yue
Feng, Shien‐Ping
Wang, Yuqi
Li, Gu
Wang, Zhen
Zhou, Guofu
Yang, Zhengchi
Feng, Yancong
Liu, Jun‐Ming
Gao, Jinwei
Author_xml – sequence: 1
  givenname: Gu
  surname: Li
  fullname: Li, Gu
  organization: South China Normal University
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0003-3905-9459
  surname: Wang
  fullname: Wang, Zhen
  email: zhenwang@m.scnu.edu.cn
  organization: South China Normal University
– sequence: 3
  givenname: Yuqi
  surname: Wang
  fullname: Wang, Yuqi
  organization: South China Normal University
– sequence: 4
  givenname: Zhengchi
  surname: Yang
  fullname: Yang, Zhengchi
  organization: South China Normal University
– sequence: 5
  givenname: Pengyu
  surname: Dong
  fullname: Dong, Pengyu
  organization: South China Normal University
– sequence: 6
  givenname: Yancong
  orcidid: 0000-0003-2530-9234
  surname: Feng
  fullname: Feng, Yancong
  email: fengyancong@m.scnu.edu.cn
  organization: South China Normal University
– sequence: 7
  givenname: Yue
  surname: Jiang
  fullname: Jiang, Yue
  organization: South China Normal University
– sequence: 8
  givenname: Shien‐Ping
  surname: Feng
  fullname: Feng, Shien‐Ping
  organization: City University of Hong Kong
– sequence: 9
  givenname: Guofu
  surname: Zhou
  fullname: Zhou, Guofu
  organization: South China Normal University
– sequence: 10
  givenname: Jun‐Ming
  surname: Liu
  fullname: Liu, Jun‐Ming
  organization: Nanjing University
– sequence: 11
  givenname: Jinwei
  orcidid: 0000-0002-4545-1126
  surname: Gao
  fullname: Gao, Jinwei
  email: gaojw@scnu.edu.cn
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36988022$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaS7ttssi6KYbO7rMaDRLd8gNHBpIuhay5thWqpFSacbFuz5ByTP2SarBSRoCpSDQEXz_f47Of4j2fPCA0HtKppQQdpw656aMME4oZ_wVOqCC8omQrN57qinZR4cp3RLCKSuqN2ifi1pKwtgB-tWE3z_vr4PbgO_xiV9ZDxCtX-Em-D7axdCPjz7gmVlb2AA-t6t1llxBXIbYaW8A5zps0jfbA85OOuIGnEtY-xZfhnZwkPBnnaDFweOZ7-2zjqcRAN-AWfvgwmr7Fr1eapfg3cN9hL6entw055P5l7OLZjafGF5xPpGypnRZC8EkM2yxEOORYGQlKsOIKSpW5O9VuiwLwduiEACtFKWUQBkwyY_Qp53vXQzfB0i96mwyeWrtIQxJsapmJWFVQTL68QV6G4bo83QqG5WSSkLKTH14oIZFB626i7bTcaseN52BYgeYGFKKsFTG9rq345a1dYoSNQaqxkDVU6BZNn0he3T-p6DeCX5YB9v_0Or6cj7_q_0DJTi17g
CitedBy_id crossref_primary_10_1002_smll_202307186
crossref_primary_10_1039_D3TA06067E
crossref_primary_10_1021_acs_nanolett_4c04587
crossref_primary_10_1021_jacs_4c01882
crossref_primary_10_1002_adfm_202407897
crossref_primary_10_1002_solr_202400241
crossref_primary_10_1002_smll_202401669
crossref_primary_10_1039_D4TC02231A
crossref_primary_10_1002_smtd_202400428
crossref_primary_10_1002_solr_202300925
crossref_primary_10_1016_j_jssc_2024_124657
crossref_primary_10_1039_D4DT03120B
crossref_primary_10_1039_D4TC01305K
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1039_D4EE01008F
Cites_doi 10.1039/C8TA06025H
10.1016/j.solener.2019.05.033
10.1109/JPHOTOV.2012.2198434
10.1016/j.mtphys.2021.100565
10.1021/acsami.2c13507
10.1002/admi.201500768
10.1126/science.abh1035
10.1021/jacs.8b01037
10.1021/acsami.8b01054
10.1016/j.joule.2022.07.008
10.1002/adma.202005410
10.1111/php.12073
10.1038/s41560-022-01086-7
10.1039/D0EE02575E
10.1038/ncomms6784
10.1021/acs.chemrev.0c00107
10.1002/jcc.26812
10.1021/ja809598r
10.1038/ncomms4586
10.1021/acsami.5b07703
10.1002/solr.202000646
10.1016/j.joule.2021.11.013
10.1021/acs.chemrev.8b00539
10.1126/science.1228604
10.1021/acsenergylett.7b00981
10.1038/s41467-022-34332-3
10.1021/acsami.2c10171
10.1021/acs.jpclett.2c01356
10.1002/jcc.26068
10.1002/adma.201901284
10.1039/C9TA09584E
10.1002/adfm.201908613
10.1002/adma.201802763
10.1007/s12221-017-1120-y
10.1021/acsami.1c12283
10.1016/j.jallcom.2019.153076
10.1038/nature12509
10.1021/acs.jpclett.0c00295
10.1016/j.surfin.2021.100969
10.1039/D0EE01967D
10.1038/s41467-021-22049-8
10.1002/advs.201901067
10.1002/smll.202008145
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202301323
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36988022
10_1002_smll_202301323
SMLL202301323
Genre article
Journal Article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research
  funderid: 2022B1515120006; 2022A1515010264
– fundername: NSFC
  funderid: 62105124
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M721215
– fundername: Science and Technology Programs of Guangzhou
  funderid: 202201000008; 2019050001; 202102020400
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M721215
– fundername: Science and Technology Programs of Guangzhou
  grantid: 2019050001
– fundername: Science and Technology Programs of Guangzhou
  grantid: 202201000008
– fundername: Science and Technology Programs of Guangzhou
  grantid: 202102020400
– fundername: NSFC
  grantid: 62105124
– fundername: Guangdong Basic and Applied Basic Research
  grantid: 2022B1515120006
– fundername: Guangdong Basic and Applied Basic Research
  grantid: 2022A1515010264
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3733-88911f966282c2bb6bb6b8ec8767c20c47240227a55463d446eed86588e12e283
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 14:09:36 EDT 2025
Fri Jul 25 12:08:32 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Tue Jul 01 02:54:29 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Wed Jan 22 16:19:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords co-solvent engineering
modules
perovskite solar cells
intermolecular interaction
anti-solvent free
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-88911f966282c2bb6bb6b8ec8767c20c47240227a55463d446eed86588e12e283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3905-9459
0000-0003-2530-9234
0000-0002-4545-1126
PMID 36988022
PQID 2835818005
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2792502740
proquest_journals_2835818005
pubmed_primary_36988022
crossref_citationtrail_10_1002_smll_202301323
crossref_primary_10_1002_smll_202301323
wiley_primary_10_1002_smll_202301323_SMLL202301323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2017; 2
2021; 23
2019; 6
2018; 140
2019; 31
2019; 30
2020; 120
2013; 89
2013; 501
2020; 13
2020; 11
2022; 43
2009; 131
2021; 1
2015; 7
2019; 187
2020; 8
2018; 6
2021; 13
2020; 5
2014; 5
2012; 2
2021; 12
2019; 40
2016; 3
2021; 33
2022; 6
2022; 7
2021; 17
2022; 13
2022; 14
2018; 30
2019; 119
2021; 372
2017; 18
2020; 817
2018; 10
2012; 338
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
Li Z. (e_1_2_8_43_1) 2021; 1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 5
  start-page: 3586
  year: 2014
  publication-title: Nat. Commun.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 5088
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 89
  start-page: 849
  year: 2013
  publication-title: Photochem. Photobiol.
– volume: 43
  start-page: 539
  year: 2022
  publication-title: J. Comput. Chem.
– volume: 817
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 1512
  year: 2017
  publication-title: Fibers Polym.
– volume: 13
  start-page: 3412
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 119
  start-page: 3036
  year: 2019
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2490
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 303
  year: 2012
  publication-title: IEEE J. Photovoltaics
– volume: 23
  year: 2021
  publication-title: Surf. Interfaces
– volume: 7
  start-page: 828
  year: 2022
  publication-title: Nat. Energy
– volume: 21
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 6
  start-page: 2203
  year: 2022
  publication-title: Joule
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 6
  start-page: 315
  year: 2022
  publication-title: Joule
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 140
  start-page: 6317
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 2868
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 8
  start-page: 670
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 7867
  year: 2020
  publication-title: Chem. Rev.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 2
  start-page: 2686
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4666
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 372
  start-page: 1327
  year: 2021
  publication-title: Science
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 1
  start-page: 4
  year: 2021
  publication-title: Soft Sci.
– volume: 5
  year: 2020
  publication-title: Sol. RRL
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1878
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6655
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 9503
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 187
  start-page: 147
  year: 2019
  publication-title: Sol. Energy
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
– ident: e_1_2_8_9_1
  doi: 10.1039/C8TA06025H
– ident: e_1_2_8_26_1
  doi: 10.1016/j.solener.2019.05.033
– ident: e_1_2_8_2_1
  doi: 10.1109/JPHOTOV.2012.2198434
– ident: e_1_2_8_10_1
  doi: 10.1016/j.mtphys.2021.100565
– ident: e_1_2_8_12_1
  doi: 10.1021/acsami.2c13507
– ident: e_1_2_8_25_1
  doi: 10.1002/admi.201500768
– ident: e_1_2_8_24_1
  doi: 10.1126/science.abh1035
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.8b01037
– volume: 1
  start-page: 4
  year: 2021
  ident: e_1_2_8_43_1
  publication-title: Soft Sci.
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.8b01054
– ident: e_1_2_8_32_1
  doi: 10.1016/j.joule.2022.07.008
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202005410
– ident: e_1_2_8_37_1
  doi: 10.1111/php.12073
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-022-01086-7
– ident: e_1_2_8_17_1
  doi: 10.1039/D0EE02575E
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.chemrev.0c00107
– ident: e_1_2_8_30_1
  doi: 10.1002/jcc.26812
– ident: e_1_2_8_5_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_1_1
  doi: 10.1038/ncomms4586
– ident: e_1_2_8_41_1
  doi: 10.1021/acsami.5b07703
– ident: e_1_2_8_13_1
  doi: 10.1002/solr.202000646
– ident: e_1_2_8_18_1
  doi: 10.1016/j.joule.2021.11.013
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1228604
– ident: e_1_2_8_19_1
  doi: 10.1021/acsenergylett.7b00981
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-022-34332-3
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.2c10171
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.jpclett.2c01356
– ident: e_1_2_8_31_1
  doi: 10.1002/jcc.26068
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201901284
– ident: e_1_2_8_42_1
  doi: 10.1039/C9TA09584E
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201908613
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201802763
– ident: e_1_2_8_36_1
  doi: 10.1007/s12221-017-1120-y
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.1c12283
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jallcom.2019.153076
– ident: e_1_2_8_8_1
  doi: 10.1038/nature12509
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.jpclett.0c00295
– ident: e_1_2_8_16_1
  doi: 10.1016/j.surfin.2021.100969
– ident: e_1_2_8_21_1
  doi: 10.1039/D0EE01967D
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-021-22049-8
– ident: e_1_2_8_35_1
  doi: 10.1002/advs.201901067
– ident: e_1_2_8_33_1
  doi: 10.1002/smll.202008145
SSID ssj0031247
Score 2.5824718
Snippet The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by...
The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2301323
SubjectTerms anti‐solvent free
co‐solvent engineering
Crystal defects
Crystallization
Energy conversion efficiency
Industrial applications
intermolecular interaction
Modules
Nanotechnology
perovskite solar cells
Perovskites
Photovoltaic cells
Pinhole defects
Pinholes
Solar cells
Solvents
Toxicity
Title Co‐Solvent Engineering Contributing to Achieve High‐Performance Perovskite Solar Cells and Modules Based on Anti‐Solvent Free Technology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202301323
https://www.ncbi.nlm.nih.gov/pubmed/36988022
https://www.proquest.com/docview/2835818005
https://www.proquest.com/docview/2792502740
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5KTukhP22TuEmLCoGelHgl27KP222XULIldBPIzViyTJY4dom9OfTUJyh9xjxJZuxd725DKKTgg4wkJMszmhlp5huAQxSpPZ36Ls9MIrgXaMV16EouCO7T-hJNFgoUHn0LTi68r5f-5VIUf4sP0R24EWc0-zUxeKKr4wVoaHWT09UBqtBoUBHcZ08GBJ7_-XuHHyVReDXZVVBmcQLemqM2uuJ4tfuqVHqkaq5qro3oGW5CMp9063FyfTSt9ZH5-Ree4_981RZszPRS1m8JaRte2OIVvFxCK3wNvwfl_a8_4zInF0m2VMUI4qpNnIUvdcn65mpi7ywjJxLscrYITmBYLu8qOjJmY7Kq2cDmecWSImWjMp3mtmKfULCmrCxYv6gnSyMOb61li6uAN3Ax_HI-OOGzdA7cSCUlD0PcWDM0r9DKM0LrgJ7QGtyPlRGu8RTd9AiVkOOcTNFORfkdooYU2p6wqAbtwFpRFnYPmNZR6mcqlTrIPBTCSWCiLBIK6RF7-toBPv-dsZlhnVPKjTxuUZpFTOscd-vswMeu_Y8W5ePJlgdz6ohn3F7FhFlHMfOu78CHrhr5lC5fksKWU2yjItQ2hfJcB3ZbquqGkkEUUsizA6KhjX_MIR6PTk-7t7fP6bQP61Ru_Y4PYK2-ndp3qF3V-n3DQQ_g3x57
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcoAeeJVHoICRkDi5m9pJnByXFasFdivEtlJvUew4oiJNUJPtgRO_APEb-SXMJJvsLlWFRKUc8rCV14znG8_MZ4DXaFIPdOq7PDOJ4F6gFdehK7kguk_rS3RZqFB4dhhMjr0PJ36XTUi1MC0_RD_hRprRjNek4DQhPVixhlZnOcUOEEOjRyW34GYTpCNc9LlnkJJovpr1VdBqcaLe6ngbXTHY7L9ply6BzU3s2hif8V3Q3WO3OSdf9xe13jff_2J0vNZ73YM7S2jKhq0s3YcbtngAO2uEhbvwc1T-_vFrXuaUJcnWLjFiuWrXzsKDumRD8-XUXlhGeSTY5dOqPoHhfnlR0awxm5NjzUY2zyuWFCmblekitxV7i7Y1ZWXBhkV9unbH8bm1bBUNeAjH43dHowlfrujAjVRS8jDEsTVDDwsdPSO0DmgLrcEhWRnhGk9RsEeohHLnZIquKprwEEFSaA-ERST0CLaLsrBPgGkdpX6mUqmDzEM7nAQmyiKhUCSxp68d4N3_jM2S7pxW3cjjlqhZxPSd4_47O_Cmb_-tJfq4suVeJx7xUuGrmGjrqGze9R141V9GVaX4S1LYcoFtVISAUyjPdeBxK1b9rWQQhVT17IBohOMfzxDPZ9Npf_T0fzq9hFuTo9k0nr4__PgMbtP5Ng15D7br84V9jmCr1i8adfoDvA8imQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2VVkJwgLZQMBTYSkictnV3ba99DIGo0KSqCJV6s7zrtagwdlU7PXDiF1T9jf0lnbETJ6FCSCDl4I9d-SMz-954Z94CvEVI3dep7_LMJIJ7gVZch67kguQ-rS8xZKFC4dFRcHDifT71Txeq-Ft9iO6DG3lGM16Tg5-n2d5cNLT6kdPUAVJoDKjkPVjzAsRKokVfOgEpiejVLK-CoMVJeWsm2-iKveX-y7B0h2suU9cGewaPIZnddZty8n13Uutd8_M3Qcf_eax1eDQlpqzXWtIGrNhiEx4uyBU-gat-efPrelzmlCPJFk4x0rhqV87CnbpkPfPtzF5aRlkk2OV4Xp3AcLu8rOibMRtTWM36Ns8rlhQpG5XpJLcVe4_ImrKyYL2iPlu44uDCWjafC3gKJ4OPX_sHfLqeAzdSScnDEEfWDOMrDPOM0DqgX2gNDsjKCNd4iqZ6hEooc06mGKgigIdIkUK7LyzyoC1YLcrCPgemdZT6mUqlDjIPUTgJTJRFQqFBYk9fO8Bnf2dspmLntOZGHrcyzSKm9xx379mBd13781bm448tt2fWEU_dvYpJtI6K5l3fgZ3uNDoqzb4khS0n2EZFSDeF8lwHnrVW1V1KBlFINc8OiMY2_nIP8Xg0HHZ7L_6l0xu4f_xhEA8_HR2-hAd0uM1B3obV-mJiXyHTqvXrxpluATrJIUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%E2%80%90Solvent+Engineering+Contributing+to+Achieve+High%E2%80%90Performance+Perovskite+Solar+Cells+and+Modules+Based+on+Anti%E2%80%90Solvent+Free+Technology&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Gu&rft.au=Wang%2C+Zhen&rft.au=Wang%2C+Yuqi&rft.au=Yang%2C+Zhengchi&rft.date=2023-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202301323&rft.externalDBID=10.1002%252Fsmll.202301323&rft.externalDocID=SMLL202301323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon