Co‐Solvent Engineering Contributing to Achieve High‐Performance Perovskite Solar Cells and Modules Based on Anti‐Solvent Free Technology
The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings to...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 28; pp. e2301323 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202301323 |
Cover
Abstract | The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs.
A facile and effective co‐solvent engineering strategy is applied to obtain high quality perovskite film and achieve optimal PCE over 20% and 16% for devices with small area and 5 × 5 cm module, respectively. |
---|---|
AbstractList | The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs. The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs. The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs. The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs. A facile and effective co‐solvent engineering strategy is applied to obtain high quality perovskite film and achieve optimal PCE over 20% and 16% for devices with small area and 5 × 5 cm module, respectively. |
Author | Dong, Pengyu Jiang, Yue Feng, Shien‐Ping Wang, Yuqi Li, Gu Wang, Zhen Zhou, Guofu Yang, Zhengchi Feng, Yancong Liu, Jun‐Ming Gao, Jinwei |
Author_xml | – sequence: 1 givenname: Gu surname: Li fullname: Li, Gu organization: South China Normal University – sequence: 2 givenname: Zhen orcidid: 0000-0003-3905-9459 surname: Wang fullname: Wang, Zhen email: zhenwang@m.scnu.edu.cn organization: South China Normal University – sequence: 3 givenname: Yuqi surname: Wang fullname: Wang, Yuqi organization: South China Normal University – sequence: 4 givenname: Zhengchi surname: Yang fullname: Yang, Zhengchi organization: South China Normal University – sequence: 5 givenname: Pengyu surname: Dong fullname: Dong, Pengyu organization: South China Normal University – sequence: 6 givenname: Yancong orcidid: 0000-0003-2530-9234 surname: Feng fullname: Feng, Yancong email: fengyancong@m.scnu.edu.cn organization: South China Normal University – sequence: 7 givenname: Yue surname: Jiang fullname: Jiang, Yue organization: South China Normal University – sequence: 8 givenname: Shien‐Ping surname: Feng fullname: Feng, Shien‐Ping organization: City University of Hong Kong – sequence: 9 givenname: Guofu surname: Zhou fullname: Zhou, Guofu organization: South China Normal University – sequence: 10 givenname: Jun‐Ming surname: Liu fullname: Liu, Jun‐Ming organization: Nanjing University – sequence: 11 givenname: Jinwei orcidid: 0000-0002-4545-1126 surname: Gao fullname: Gao, Jinwei email: gaojw@scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36988022$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaS7ttssi6KYbO7rMaDRLd8gNHBpIuhay5thWqpFSacbFuz5ByTP2SarBSRoCpSDQEXz_f47Of4j2fPCA0HtKppQQdpw656aMME4oZ_wVOqCC8omQrN57qinZR4cp3RLCKSuqN2ifi1pKwtgB-tWE3z_vr4PbgO_xiV9ZDxCtX-Em-D7axdCPjz7gmVlb2AA-t6t1llxBXIbYaW8A5zps0jfbA85OOuIGnEtY-xZfhnZwkPBnnaDFweOZ7-2zjqcRAN-AWfvgwmr7Fr1eapfg3cN9hL6entw055P5l7OLZjafGF5xPpGypnRZC8EkM2yxEOORYGQlKsOIKSpW5O9VuiwLwduiEACtFKWUQBkwyY_Qp53vXQzfB0i96mwyeWrtIQxJsapmJWFVQTL68QV6G4bo83QqG5WSSkLKTH14oIZFB626i7bTcaseN52BYgeYGFKKsFTG9rq345a1dYoSNQaqxkDVU6BZNn0he3T-p6DeCX5YB9v_0Or6cj7_q_0DJTi17g |
CitedBy_id | crossref_primary_10_1002_smll_202307186 crossref_primary_10_1039_D3TA06067E crossref_primary_10_1021_acs_nanolett_4c04587 crossref_primary_10_1021_jacs_4c01882 crossref_primary_10_1002_adfm_202407897 crossref_primary_10_1002_solr_202400241 crossref_primary_10_1002_smll_202401669 crossref_primary_10_1039_D4TC02231A crossref_primary_10_1002_smtd_202400428 crossref_primary_10_1002_solr_202300925 crossref_primary_10_1016_j_jssc_2024_124657 crossref_primary_10_1039_D4DT03120B crossref_primary_10_1039_D4TC01305K crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1039_D4EE01008F |
Cites_doi | 10.1039/C8TA06025H 10.1016/j.solener.2019.05.033 10.1109/JPHOTOV.2012.2198434 10.1016/j.mtphys.2021.100565 10.1021/acsami.2c13507 10.1002/admi.201500768 10.1126/science.abh1035 10.1021/jacs.8b01037 10.1021/acsami.8b01054 10.1016/j.joule.2022.07.008 10.1002/adma.202005410 10.1111/php.12073 10.1038/s41560-022-01086-7 10.1039/D0EE02575E 10.1038/ncomms6784 10.1021/acs.chemrev.0c00107 10.1002/jcc.26812 10.1021/ja809598r 10.1038/ncomms4586 10.1021/acsami.5b07703 10.1002/solr.202000646 10.1016/j.joule.2021.11.013 10.1021/acs.chemrev.8b00539 10.1126/science.1228604 10.1021/acsenergylett.7b00981 10.1038/s41467-022-34332-3 10.1021/acsami.2c10171 10.1021/acs.jpclett.2c01356 10.1002/jcc.26068 10.1002/adma.201901284 10.1039/C9TA09584E 10.1002/adfm.201908613 10.1002/adma.201802763 10.1007/s12221-017-1120-y 10.1021/acsami.1c12283 10.1016/j.jallcom.2019.153076 10.1038/nature12509 10.1021/acs.jpclett.0c00295 10.1016/j.surfin.2021.100969 10.1039/D0EE01967D 10.1038/s41467-021-22049-8 10.1002/advs.201901067 10.1002/smll.202008145 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202301323 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36988022 10_1002_smll_202301323 SMLL202301323 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research funderid: 2022B1515120006; 2022A1515010264 – fundername: NSFC funderid: 62105124 – fundername: China Postdoctoral Science Foundation funderid: 2022M721215 – fundername: Science and Technology Programs of Guangzhou funderid: 202201000008; 2019050001; 202102020400 – fundername: China Postdoctoral Science Foundation grantid: 2022M721215 – fundername: Science and Technology Programs of Guangzhou grantid: 2019050001 – fundername: Science and Technology Programs of Guangzhou grantid: 202201000008 – fundername: Science and Technology Programs of Guangzhou grantid: 202102020400 – fundername: NSFC grantid: 62105124 – fundername: Guangdong Basic and Applied Basic Research grantid: 2022B1515120006 – fundername: Guangdong Basic and Applied Basic Research grantid: 2022A1515010264 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3733-88911f966282c2bb6bb6b8ec8767c20c47240227a55463d446eed86588e12e283 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 14:09:36 EDT 2025 Fri Jul 25 12:08:32 EDT 2025 Thu Apr 03 07:01:44 EDT 2025 Tue Jul 01 02:54:29 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Wed Jan 22 16:19:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | co-solvent engineering modules perovskite solar cells intermolecular interaction anti-solvent free |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-88911f966282c2bb6bb6b8ec8767c20c47240227a55463d446eed86588e12e283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3905-9459 0000-0003-2530-9234 0000-0002-4545-1126 |
PMID | 36988022 |
PQID | 2835818005 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2792502740 proquest_journals_2835818005 pubmed_primary_36988022 crossref_citationtrail_10_1002_smll_202301323 crossref_primary_10_1002_smll_202301323 wiley_primary_10_1002_smll_202301323_SMLL202301323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 21 2017; 2 2021; 23 2019; 6 2018; 140 2019; 31 2019; 30 2020; 120 2013; 89 2013; 501 2020; 13 2020; 11 2022; 43 2009; 131 2021; 1 2015; 7 2019; 187 2020; 8 2018; 6 2021; 13 2020; 5 2014; 5 2012; 2 2021; 12 2019; 40 2016; 3 2021; 33 2022; 6 2022; 7 2021; 17 2022; 13 2022; 14 2018; 30 2019; 119 2021; 372 2017; 18 2020; 817 2018; 10 2012; 338 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 Li Z. (e_1_2_8_43_1) 2021; 1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 5 start-page: 3586 year: 2014 publication-title: Nat. Commun. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 5088 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 89 start-page: 849 year: 2013 publication-title: Photochem. Photobiol. – volume: 43 start-page: 539 year: 2022 publication-title: J. Comput. Chem. – volume: 817 year: 2020 publication-title: J. Alloys Compd. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 18 start-page: 1512 year: 2017 publication-title: Fibers Polym. – volume: 13 start-page: 3412 year: 2020 publication-title: Energy Environ. Sci. – volume: 119 start-page: 3036 year: 2019 publication-title: Chem. Rev. – volume: 11 start-page: 2490 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 303 year: 2012 publication-title: IEEE J. Photovoltaics – volume: 23 year: 2021 publication-title: Surf. Interfaces – volume: 7 start-page: 828 year: 2022 publication-title: Nat. Energy – volume: 21 year: 2021 publication-title: Mater. Today Phys. – volume: 17 year: 2021 publication-title: Small – volume: 6 start-page: 2203 year: 2022 publication-title: Joule – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 6 start-page: 315 year: 2022 publication-title: Joule – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 140 start-page: 6317 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 2868 year: 2019 publication-title: J. Comput. Chem. – volume: 8 start-page: 670 year: 2020 publication-title: J. Mater. Chem. A – volume: 120 start-page: 7867 year: 2020 publication-title: Chem. Rev. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 2 start-page: 2686 year: 2017 publication-title: ACS Energy Lett. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4666 year: 2020 publication-title: Energy Environ. Sci. – volume: 372 start-page: 1327 year: 2021 publication-title: Science – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 1 start-page: 4 year: 2021 publication-title: Soft Sci. – volume: 5 year: 2020 publication-title: Sol. RRL – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1878 year: 2021 publication-title: Nat. Commun. – volume: 13 start-page: 6655 year: 2022 publication-title: Nat. Commun. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 9503 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 187 start-page: 147 year: 2019 publication-title: Sol. Energy – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 501 start-page: 395 year: 2013 publication-title: Nature – ident: e_1_2_8_9_1 doi: 10.1039/C8TA06025H – ident: e_1_2_8_26_1 doi: 10.1016/j.solener.2019.05.033 – ident: e_1_2_8_2_1 doi: 10.1109/JPHOTOV.2012.2198434 – ident: e_1_2_8_10_1 doi: 10.1016/j.mtphys.2021.100565 – ident: e_1_2_8_12_1 doi: 10.1021/acsami.2c13507 – ident: e_1_2_8_25_1 doi: 10.1002/admi.201500768 – ident: e_1_2_8_24_1 doi: 10.1126/science.abh1035 – ident: e_1_2_8_38_1 doi: 10.1021/jacs.8b01037 – volume: 1 start-page: 4 year: 2021 ident: e_1_2_8_43_1 publication-title: Soft Sci. – ident: e_1_2_8_27_1 doi: 10.1021/acsami.8b01054 – ident: e_1_2_8_32_1 doi: 10.1016/j.joule.2022.07.008 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202005410 – ident: e_1_2_8_37_1 doi: 10.1111/php.12073 – ident: e_1_2_8_14_1 doi: 10.1038/s41560-022-01086-7 – ident: e_1_2_8_17_1 doi: 10.1039/D0EE02575E – ident: e_1_2_8_3_1 doi: 10.1038/ncomms6784 – ident: e_1_2_8_7_1 doi: 10.1021/acs.chemrev.0c00107 – ident: e_1_2_8_30_1 doi: 10.1002/jcc.26812 – ident: e_1_2_8_5_1 doi: 10.1021/ja809598r – ident: e_1_2_8_1_1 doi: 10.1038/ncomms4586 – ident: e_1_2_8_41_1 doi: 10.1021/acsami.5b07703 – ident: e_1_2_8_13_1 doi: 10.1002/solr.202000646 – ident: e_1_2_8_18_1 doi: 10.1016/j.joule.2021.11.013 – ident: e_1_2_8_15_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_8_6_1 doi: 10.1126/science.1228604 – ident: e_1_2_8_19_1 doi: 10.1021/acsenergylett.7b00981 – ident: e_1_2_8_40_1 doi: 10.1038/s41467-022-34332-3 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.2c10171 – ident: e_1_2_8_23_1 doi: 10.1021/acs.jpclett.2c01356 – ident: e_1_2_8_31_1 doi: 10.1002/jcc.26068 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201901284 – ident: e_1_2_8_42_1 doi: 10.1039/C9TA09584E – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201908613 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201802763 – ident: e_1_2_8_36_1 doi: 10.1007/s12221-017-1120-y – ident: e_1_2_8_39_1 doi: 10.1021/acsami.1c12283 – ident: e_1_2_8_29_1 doi: 10.1016/j.jallcom.2019.153076 – ident: e_1_2_8_8_1 doi: 10.1038/nature12509 – ident: e_1_2_8_4_1 doi: 10.1021/acs.jpclett.0c00295 – ident: e_1_2_8_16_1 doi: 10.1016/j.surfin.2021.100969 – ident: e_1_2_8_21_1 doi: 10.1039/D0EE01967D – ident: e_1_2_8_20_1 doi: 10.1038/s41467-021-22049-8 – ident: e_1_2_8_35_1 doi: 10.1002/advs.201901067 – ident: e_1_2_8_33_1 doi: 10.1002/smll.202008145 |
SSID | ssj0031247 |
Score | 2.5824718 |
Snippet | The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by... The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2301323 |
SubjectTerms | anti‐solvent free co‐solvent engineering Crystal defects Crystallization Energy conversion efficiency Industrial applications intermolecular interaction Modules Nanotechnology perovskite solar cells Perovskites Photovoltaic cells Pinhole defects Pinholes Solar cells Solvents Toxicity |
Title | Co‐Solvent Engineering Contributing to Achieve High‐Performance Perovskite Solar Cells and Modules Based on Anti‐Solvent Free Technology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202301323 https://www.ncbi.nlm.nih.gov/pubmed/36988022 https://www.proquest.com/docview/2835818005 https://www.proquest.com/docview/2792502740 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5KTukhP22TuEmLCoGelHgl27KP222XULIldBPIzViyTJY4dom9OfTUJyh9xjxJZuxd725DKKTgg4wkJMszmhlp5huAQxSpPZ36Ls9MIrgXaMV16EouCO7T-hJNFgoUHn0LTi68r5f-5VIUf4sP0R24EWc0-zUxeKKr4wVoaHWT09UBqtBoUBHcZ08GBJ7_-XuHHyVReDXZVVBmcQLemqM2uuJ4tfuqVHqkaq5qro3oGW5CMp9063FyfTSt9ZH5-Ree4_981RZszPRS1m8JaRte2OIVvFxCK3wNvwfl_a8_4zInF0m2VMUI4qpNnIUvdcn65mpi7ywjJxLscrYITmBYLu8qOjJmY7Kq2cDmecWSImWjMp3mtmKfULCmrCxYv6gnSyMOb61li6uAN3Ax_HI-OOGzdA7cSCUlD0PcWDM0r9DKM0LrgJ7QGtyPlRGu8RTd9AiVkOOcTNFORfkdooYU2p6wqAbtwFpRFnYPmNZR6mcqlTrIPBTCSWCiLBIK6RF7-toBPv-dsZlhnVPKjTxuUZpFTOscd-vswMeu_Y8W5ePJlgdz6ohn3F7FhFlHMfOu78CHrhr5lC5fksKWU2yjItQ2hfJcB3ZbquqGkkEUUsizA6KhjX_MIR6PTk-7t7fP6bQP61Ru_Y4PYK2-ndp3qF3V-n3DQQ_g3x57 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcoAeeJVHoICRkDi5m9pJnByXFasFdivEtlJvUew4oiJNUJPtgRO_APEb-SXMJJvsLlWFRKUc8rCV14znG8_MZ4DXaFIPdOq7PDOJ4F6gFdehK7kguk_rS3RZqFB4dhhMjr0PJ36XTUi1MC0_RD_hRprRjNek4DQhPVixhlZnOcUOEEOjRyW34GYTpCNc9LlnkJJovpr1VdBqcaLe6ngbXTHY7L9ply6BzU3s2hif8V3Q3WO3OSdf9xe13jff_2J0vNZ73YM7S2jKhq0s3YcbtngAO2uEhbvwc1T-_vFrXuaUJcnWLjFiuWrXzsKDumRD8-XUXlhGeSTY5dOqPoHhfnlR0awxm5NjzUY2zyuWFCmblekitxV7i7Y1ZWXBhkV9unbH8bm1bBUNeAjH43dHowlfrujAjVRS8jDEsTVDDwsdPSO0DmgLrcEhWRnhGk9RsEeohHLnZIquKprwEEFSaA-ERST0CLaLsrBPgGkdpX6mUqmDzEM7nAQmyiKhUCSxp68d4N3_jM2S7pxW3cjjlqhZxPSd4_47O_Cmb_-tJfq4suVeJx7xUuGrmGjrqGze9R141V9GVaX4S1LYcoFtVISAUyjPdeBxK1b9rWQQhVT17IBohOMfzxDPZ9Npf_T0fzq9hFuTo9k0nr4__PgMbtP5Ng15D7br84V9jmCr1i8adfoDvA8imQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2VVkJwgLZQMBTYSkictnV3ba99DIGo0KSqCJV6s7zrtagwdlU7PXDiF1T9jf0lnbETJ6FCSCDl4I9d-SMz-954Z94CvEVI3dep7_LMJIJ7gVZch67kguQ-rS8xZKFC4dFRcHDifT71Txeq-Ft9iO6DG3lGM16Tg5-n2d5cNLT6kdPUAVJoDKjkPVjzAsRKokVfOgEpiejVLK-CoMVJeWsm2-iKveX-y7B0h2suU9cGewaPIZnddZty8n13Uutd8_M3Qcf_eax1eDQlpqzXWtIGrNhiEx4uyBU-gat-efPrelzmlCPJFk4x0rhqV87CnbpkPfPtzF5aRlkk2OV4Xp3AcLu8rOibMRtTWM36Ns8rlhQpG5XpJLcVe4_ImrKyYL2iPlu44uDCWjafC3gKJ4OPX_sHfLqeAzdSScnDEEfWDOMrDPOM0DqgX2gNDsjKCNd4iqZ6hEooc06mGKgigIdIkUK7LyzyoC1YLcrCPgemdZT6mUqlDjIPUTgJTJRFQqFBYk9fO8Bnf2dspmLntOZGHrcyzSKm9xx379mBd13781bm448tt2fWEU_dvYpJtI6K5l3fgZ3uNDoqzb4khS0n2EZFSDeF8lwHnrVW1V1KBlFINc8OiMY2_nIP8Xg0HHZ7L_6l0xu4f_xhEA8_HR2-hAd0uM1B3obV-mJiXyHTqvXrxpluATrJIUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%E2%80%90Solvent+Engineering+Contributing+to+Achieve+High%E2%80%90Performance+Perovskite+Solar+Cells+and+Modules+Based+on+Anti%E2%80%90Solvent+Free+Technology&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Gu&rft.au=Wang%2C+Zhen&rft.au=Wang%2C+Yuqi&rft.au=Yang%2C+Zhengchi&rft.date=2023-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202301323&rft.externalDBID=10.1002%252Fsmll.202301323&rft.externalDocID=SMLL202301323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |