Co‐Solvent Engineering Contributing to Achieve High‐Performance Perovskite Solar Cells and Modules Based on Anti‐Solvent Free Technology
The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings to...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 28; pp. e2301323 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202301323 |
Cover
Summary: | The pinhole‐free and defect‐less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti‐solvent crystallization strategies. However, the involvement of anti‐solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large‐scale industrial application. In this work, a facile and effective co‐solvent engineering strategy is introduced to obtain high‐ quality perovskite film while avoiding the usage of anti‐solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co‐solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co‐solvent, N‐methylpyrrolidone (NMP) and without usage of anti‐solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co‐solvent selection for PSCs based on anti‐solvent free technology and promotes commercial application of PSCs.
A facile and effective co‐solvent engineering strategy is applied to obtain high quality perovskite film and achieve optimal PCE over 20% and 16% for devices with small area and 5 × 5 cm module, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202301323 |