Novel β‐Glucocerebrosidase Activators That Bind to a New Pocket at a Dimer Interface and Induce Dimerization
Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of β‐Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3‐b]pyrazine activators effecting both V...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 10; pp. 5436 - 5442 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
01.03.2021
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202013890 |
Cover
Summary: | Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of β‐Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3‐b]pyrazine activators effecting both Vmax and Km. They bind to human GCase and increase substrate metabolism in the lysosome in a cellular assay. We obtained the first crystal structure for an activator and identified a novel non‐inhibitory binding mode at the interface of a dimer, rationalizing the observed structure–activity relationship (SAR). The compound binds GCase inducing formation of a dimeric state at both endoplasmic reticulum (ER) and lysosomal pHs, as confirmed by analytical ultracentrifugation. Importantly, the pyrrolo[2,3‐b]pyrazines have central nervous system (CNS) drug‐like properties. Our findings are important for future drug discovery efforts in the field of GCase activation and provide a deeper mechanistic understanding of the requirements for enzymatic activation, pointing to the relevance of dimerization.
A first crystal structure for a novel GCase activator is obtained and a novel non‐inhibitory binding mode at a dimer interface, rationalizing the observed structure–activity relationship, is identified. Mechanistic insights and key information for future drug discovery efforts towards GCase activation are provided. |
---|---|
Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202013890 |