Predefined-time stabilisation of a class of nonholonomic systems
This paper deals with the predefined-time stabilisation problem for a class of uncertain chained-form nonholonomic systems. Based on a novel generalised Lyapunov-like characterisation of predefined-time stability, new predefined-time controllers are introduced for a class of first and second order s...
Saved in:
Published in | International journal of control Vol. 93; no. 12; pp. 2941 - 2948 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.12.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7179 1366-5820 |
DOI | 10.1080/00207179.2019.1569262 |
Cover
Summary: | This paper deals with the predefined-time stabilisation problem for a class of uncertain chained-form nonholonomic systems. Based on a novel generalised Lyapunov-like characterisation of predefined-time stability, new predefined-time controllers are introduced for a class of first and second order systems with matched perturbations. Contrary to existing finite-time and fixed-time schemes, an upper bound of the settling time is an easily tuneable control parameter. Then, these results for first and second order systems are used to design a switching strategy, which guarantees the predefined-time stability of the closed-loop system. The switching time and the settling-time can be easily tuned according to the control parameters. A benchmark example is presented to show the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0020-7179 1366-5820 |
DOI: | 10.1080/00207179.2019.1569262 |