An Intuitionistic Fuzzy C-Means and Local Information-Based DCT Filtering for Fast Brain MRI Segmentation
Structural and photometric anomalies in the brain magnetic resonance images (MRIs) affect the segmentation performance. Moreover, a sudden change in intensity between two boundaries of the brain tissues makes it prone to data uncertainty, resulting in the misclassification of the pixels lying near t...
Saved in:
| Published in | Journal of digital imaging Vol. 37; no. 5; pp. 2287 - 2310 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.10.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
| DOI | 10.1007/s10278-023-00899-6 |
Cover
| Summary: | Structural and photometric anomalies in the brain magnetic resonance images (MRIs) affect the segmentation performance. Moreover, a sudden change in intensity between two boundaries of the brain tissues makes it prone to data uncertainty, resulting in the misclassification of the pixels lying near the cluster boundaries. The discrete cosine transform (DCT) domain-based filtering is an effective way to deal with structural and photometric anomalies, while the intuitionistic fuzzy C-means (IFCM) clustering can handle the uncertainty using the intuitionistic fuzzy set (IFS) theory. In this background, we propose two novel approaches, namely, the DCT-based intuitionistic fuzzy C-means (DCT-IFCM) and the DCT-based local information IFCM (DCT-LIFCM), which effectively deal with the Rician and Gaussian noises and also handle the data uncertainty problem to provide high segmentation accuracy. The DCT-IFCM approach performs the histogram-based segmentation, while the DCT-LIFCM uses the pixel-wise computation to include the spatial information. Although the DCT-LIFCM delivers slightly better performance than the DCT-IFCM, the latter is very fast in providing equally high segmentation accuracy. An exhaustive performance analysis is provided to demonstrate the superior performance of the proposed algorithms compared with the state-of-the-art algorithms, including those based on the DCT-based filtering approach and the IFS theory. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
| DOI: | 10.1007/s10278-023-00899-6 |