Robust navigation support in lowest dose image setting

Purpose Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 14; no. 2; pp. 291 - 300
Main Authors Bui, Mai, Bourier, Felix, Baur, Christoph, Milletari, Fausto, Navab, Nassir, Demirci, Stefanie
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-018-1874-8

Cover

Abstract Purpose Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff. Methods In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on ℓ 1 -sparse coding and online robust PCA (ORPCA) . Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures. Results We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of 86.9 % . Conclusion Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on ℓ 1 -sparse coding and online robust PCA (ORPCA) , our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.
AbstractList Purpose Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff. Methods In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on ℓ 1 -sparse coding and online robust PCA (ORPCA) . Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures. Results We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of 86.9 % . Conclusion Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on ℓ 1 -sparse coding and online robust PCA (ORPCA) , our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.
PurposeClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.MethodsIn this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on ℓ1-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.ResultsWe have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of 86.9%.ConclusionBesides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on ℓ1-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff. In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures. We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text]. Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.PURPOSEClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.METHODSIn this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text].RESULTSWe have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text].Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.CONCLUSIONBesides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.
Author Milletari, Fausto
Navab, Nassir
Bui, Mai
Demirci, Stefanie
Baur, Christoph
Bourier, Felix
Author_xml – sequence: 1
  givenname: Mai
  orcidid: 0000-0002-4509-8473
  surname: Bui
  fullname: Bui, Mai
  email: mai.bui@tum.de
  organization: Computer Aided Medical Procedures, Technische Universität München
– sequence: 2
  givenname: Felix
  surname: Bourier
  fullname: Bourier, Felix
  organization: Deutsches Herzzentrum München
– sequence: 3
  givenname: Christoph
  surname: Baur
  fullname: Baur, Christoph
  organization: Computer Aided Medical Procedures, Technische Universität München
– sequence: 4
  givenname: Fausto
  surname: Milletari
  fullname: Milletari, Fausto
  organization: Computer Aided Medical Procedures, Technische Universität München
– sequence: 5
  givenname: Nassir
  surname: Navab
  fullname: Navab, Nassir
  organization: Computer Aided Medical Procedures, Technische Universität München
– sequence: 6
  givenname: Stefanie
  surname: Demirci
  fullname: Demirci, Stefanie
  organization: Computer Aided Medical Procedures, Technische Universität München
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30370499$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoMozkUfwI0U3LipJmmay1IGbzAgiK5DmqalQyepSav49mbsjMKArk4g33_4zzcDh9ZZA8AZglcIQnYdEMoJTyHiKeKMpPwATBGnKKUEi8OfN4ITMAthBSHJWZYfg0kGMwaJEFNAn10xhD6x6r2pVd84m4Sh65zvk8Ymrfsw8bN0wSTNWtUmCabvG1ufgKNKtcGcbuccvN7dviwe0uXT_ePiZpnqjOE-zTDDBROV1oQwJnScutAF1xiXRJUUslyUCGUIUqErqEuoDC614kxgignN5uBy3Nt59zbELnLdBG3aVlnjhiAxwlRAmnMR0Ys9dOUGb2O7SDGGIRMii9T5lhqKtSll5-Nd_lPujESAjYD2LgRvKqmb_ltM71XTSgTlxr0c3cvoXm7cSx6TaC-5W_5fBo-ZEFlbG_9b-u_QF27OlDE
CitedBy_id crossref_primary_10_1016_j_jelectrocard_2022_04_002
crossref_primary_10_1016_j_media_2022_102584
Cites_doi 10.1007/s11548-015-1217-y
10.1093/eurheartj/ehw223
10.1016/j.cviu.2013.11.009
10.1093/europace/euv364
10.1109/34.765658
10.1109/ICIP.2016.7532775
10.1023/B:VISI.0000029664.99615.94
10.1109/MSP.2018.2826566
10.1006/jvci.2001.0495
10.1007/978-3-319-66185-8_65
10.1145/1970392.1970395
10.1007/BFb0056195
10.1109/TIP.2009.2024064
10.1109/TMI.2017.2708987
10.1586/17434440.2016.1153969
10.1109/TMI.2014.2360988
10.1109/TMI.2016.2520092
10.1118/1.4808114
10.1016/j.neucom.2015.10.052
10.1109/TCSVT.2015.2455711
10.1111/pace.13141
10.1007/978-3-319-10470-6_71
10.1007/s11548-018-1746-2
10.2147/CLEP.S47385
10.1145/3019612.3019637
10.1088/0031-9155/60/20/8087
ContentType Journal Article
Copyright CARS 2018
2018© CARS 2018
Copyright_xml – notice: CARS 2018
– notice: 2018© CARS 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-018-1874-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 300
ExternalDocumentID 30370499
10_1007_s11548_018_1874_8
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
-Y2
2VQ
AANXM
AARHV
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
EN4
H13
IHE
N2Q
O9-
S1Z
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c372t-3272b79fcc44779ccc4cbcb8c22d4ad60759d1131069cf0cd0ae2dca879262463
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Fri Sep 05 11:48:42 EDT 2025
Tue Oct 07 06:53:42 EDT 2025
Thu Apr 03 06:55:31 EDT 2025
Wed Oct 01 00:20:32 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Fri Feb 21 02:42:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Online tracking
Electrode tracking
Fluoroscopy
Online robust PCA
Sparse coding
Computer-assisted electrophysiology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-3272b79fcc44779ccc4cbcb8c22d4ad60759d1131069cf0cd0ae2dca879262463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4509-8473
PMID 30370499
PQID 2177207993
PQPubID 2043910
PageCount 10
ParticipantIDs proquest_miscellaneous_2126906589
proquest_journals_2177207993
pubmed_primary_30370499
crossref_citationtrail_10_1007_s11548_018_1874_8
crossref_primary_10_1007_s11548_018_1874_8
springer_journals_10_1007_s11548_018_1874_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Zoni-BerissoMLercariFCarazzaTDomenicucciSEpidemiology of atrial fibrillation: European perspectiveClin Epidemiol2014621322024966695406495210.2147/CLEP.S47385
FrangiAFNiessenWJVinckenKLViergeverMAWellsWMColchesterADelpSMultiscale vessel enhancement filteringMedical image computing and computer-assisted intervention—MICCAI’981998BerlinSpringer13013710.1007/BFb0056195
GaitaFGuerraPGBattagliaAAnselminoMThe dream of near-zero X-rays ablation comes trueEur Heart J20163736274927552735405310.1093/eurheartj/ehw223
WeickertJScharrHA scheme for coherence-enhancing diffusion filtering with optimized rotation invarianceJ Vis Commun Image Represent2002131–210311810.1006/jvci.2001.0495
VolpiDSarhanMHGhotbiRNavabNMateusDDemirciSOnline tracking of interventional devices for endovascular aortic repairInt J Comput Assist Radiol Surg20151067737812597683210.1007/s11548-015-1217-y
CandèsEJLiXMaYWrightJRobust principal component analysis?J ACM20115831110.1145/1970392.1970395
PanayiotouMRhodeKSKingAPMaYCooklinMNeillOMGillJHousdenCAHousdenRJImage-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for X-ray-guided cardiac electrophysiology proceduresPhys Med Biol2015602080871:CAS:528:DC%2BC28XmtVCgu7o%3D2642586010.1088/0031-9155/60/20/8087
FitzgibbonAPiluMFisherRBDirect least square fitting of ellipsesIEEE Trans Pattern Anal Mach Intell199921547648010.1109/34.765658
WolterinkJMLeinerTViergeverMAIšgumIGenerative adversarial networks for noise reduction in low-dose CTIEEE Trans Med Imaging20173612253625452857434610.1109/TMI.2017.2708987
BourierFReentsTAmmar-BuschSBuiattiAKottmaierMSemmlerVTelishevskaMBrkicAGrebmerCLennerzCKolbCHesslingGDeisenhoferIEvaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology proceduresEuropace20151891406141026589627540003110.1093/europace/euv364
HariharanSGStrobelNKaethnerCKowarschikMDemirciSAlbarqouniSFahrigRNavabNA photon recycling approach to the denoising of ultra-low dose X-ray sequencesInt J Comput Assist Radiol Surg2018138478542963748610.1007/s11548-018-1746-2
OtsuNA threshold selection method from gray-level histogramsAutomatica197511285–2962327
VaswaniNamrataBouwmansThierryJavedSajidNarayanamurthyPraneethRobust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace RecoveryIEEE Signal Processing Magazine2018354325510.1109/MSP.2018.2826566
CrowhurstJHaqqaniHWrightDWhitbyMLeeABettsJDenmanRUltra low radiation dose during electrophysiology procedures using optimised new generation fluoroscopy technologyPacing Clin Electrophysiol20174089479542861803610.1111/pace.13141
Matviychuk Y, Mailhé B, Chen X, Wang Q, Kiraly A, Strobel N, Nadar M (2016) Learning a multiscale patch-based representation for image denoising in X-ray fluoroscopy. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2330–2334
Milletari F, Belagiannis V, Navab N, Fallavollita P (2014) Fully automatic catheter localization in c-arm images using ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-sparse coding. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Part II, pp 570–577
HongBWeiLHuYCaiDHeXOnline robust principal component analysis via truncated nuclear norm regularizationNeurocomputing201617521622210.1016/j.neucom.2015.10.052
MaYGoginNCathierPHousdenRJGijsbersGCooklinMO’NeillMGillJRinaldiCARazaviRRhodeKSReal-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventionsMed Phys20134070719022382243910.1118/1.4808114
Javed S, Oh SH, Sobral A, Bouwmans T, Jung SK. (2014) OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In: Asian conference on computer vision. Springer, pp 284–299
SongWZhuJLiYChenCImage alignment by online robust PCA via stochastic gradient descentIEEE Trans Circuits Syst Video Technol20162671241125010.1109/TCSVT.2015.2455711
Ambrosini P, Ruijters D, Niessen WJ, Moelker A, van Walsum T (2017) Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 577–585
BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput Vis Image Underst2014122223410.1016/j.cviu.2013.11.009
WuXHousdenJMaYRazaviBRhodeKRueckertDFast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventionsIEEE Trans Med Imaging20153448618762529179010.1109/TMI.2014.2360988
Javed S, Bouwmans T, Jung SK (2017) Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. In: Proceedings of the symposium on applied computing. ACM, pp 89–94
AmiotCGirardCChanussotJPescatoreJDesvignesMSpatio-temporal multiscale denoising of fluoroscopic sequenceIEEE Trans Med Imaging2016356156515742681270510.1109/TMI.2016.2520092
Zhan J, Lois B, Guo H, Vaswani, N (2016) Online (and offline) robust PCA: novel algorithms and performance guarantees. In: Artificial intelligence and statistics, pp 1488–1496
CoupéPHellierPKervrannCBarillotCNonlocal means-based speckle filtering for ultrasound imagesIEEE Trans Image Process200918102221222919482578278408110.1109/TIP.2009.2024064
MacleLThibaultBAndradeJGCardiac electrophysiology procedures guided by novel non-fluoroscopic catheter tracking systemsExpert Rev Medl Dev20161343093111:CAS:528:DC%2BC28XjsFemtb0%3D10.1586/17434440.2016.1153969
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
J Weickert (1874_CR25) 2002; 13
1874_CR13
A Fitzgibbon (1874_CR8) 1999; 21
1874_CR14
W Song (1874_CR22) 2016; 26
T Bouwmans (1874_CR4) 2014; 122
M Panayiotou (1874_CR21) 2015; 60
F Bourier (1874_CR3) 2015; 18
X Wu (1874_CR27) 2015; 34
1874_CR18
L Macle (1874_CR17) 2016; 13
1874_CR19
B Hong (1874_CR12) 2016; 175
D Volpi (1874_CR24) 2015; 10
JM Wolterink (1874_CR26) 2017; 36
DG Lowe (1874_CR15) 2004; 60
M Zoni-Berisso (1874_CR29) 2014; 6
EJ Candès (1874_CR5) 2011; 58
N Otsu (1874_CR20) 1975; 11
C Amiot (1874_CR2) 2016; 35
Y Ma (1874_CR16) 2013; 40
J Crowhurst (1874_CR7) 2017; 40
F Gaita (1874_CR10) 2016; 37
SG Hariharan (1874_CR11) 2018; 13
Namrata Vaswani (1874_CR23) 2018; 35
P Coupé (1874_CR6) 2009; 18
1874_CR28
1874_CR1
AF Frangi (1874_CR9) 1998
References_xml – reference: Matviychuk Y, Mailhé B, Chen X, Wang Q, Kiraly A, Strobel N, Nadar M (2016) Learning a multiscale patch-based representation for image denoising in X-ray fluoroscopy. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2330–2334
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
– reference: MaYGoginNCathierPHousdenRJGijsbersGCooklinMO’NeillMGillJRinaldiCARazaviRRhodeKSReal-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventionsMed Phys20134070719022382243910.1118/1.4808114
– reference: HongBWeiLHuYCaiDHeXOnline robust principal component analysis via truncated nuclear norm regularizationNeurocomputing201617521622210.1016/j.neucom.2015.10.052
– reference: VolpiDSarhanMHGhotbiRNavabNMateusDDemirciSOnline tracking of interventional devices for endovascular aortic repairInt J Comput Assist Radiol Surg20151067737812597683210.1007/s11548-015-1217-y
– reference: WeickertJScharrHA scheme for coherence-enhancing diffusion filtering with optimized rotation invarianceJ Vis Commun Image Represent2002131–210311810.1006/jvci.2001.0495
– reference: BourierFReentsTAmmar-BuschSBuiattiAKottmaierMSemmlerVTelishevskaMBrkicAGrebmerCLennerzCKolbCHesslingGDeisenhoferIEvaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology proceduresEuropace20151891406141026589627540003110.1093/europace/euv364
– reference: Javed S, Oh SH, Sobral A, Bouwmans T, Jung SK. (2014) OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In: Asian conference on computer vision. Springer, pp 284–299
– reference: WuXHousdenJMaYRazaviBRhodeKRueckertDFast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventionsIEEE Trans Med Imaging20153448618762529179010.1109/TMI.2014.2360988
– reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J ACM20115831110.1145/1970392.1970395
– reference: AmiotCGirardCChanussotJPescatoreJDesvignesMSpatio-temporal multiscale denoising of fluoroscopic sequenceIEEE Trans Med Imaging2016356156515742681270510.1109/TMI.2016.2520092
– reference: GaitaFGuerraPGBattagliaAAnselminoMThe dream of near-zero X-rays ablation comes trueEur Heart J20163736274927552735405310.1093/eurheartj/ehw223
– reference: FrangiAFNiessenWJVinckenKLViergeverMAWellsWMColchesterADelpSMultiscale vessel enhancement filteringMedical image computing and computer-assisted intervention—MICCAI’981998BerlinSpringer13013710.1007/BFb0056195
– reference: FitzgibbonAPiluMFisherRBDirect least square fitting of ellipsesIEEE Trans Pattern Anal Mach Intell199921547648010.1109/34.765658
– reference: CrowhurstJHaqqaniHWrightDWhitbyMLeeABettsJDenmanRUltra low radiation dose during electrophysiology procedures using optimised new generation fluoroscopy technologyPacing Clin Electrophysiol20174089479542861803610.1111/pace.13141
– reference: MacleLThibaultBAndradeJGCardiac electrophysiology procedures guided by novel non-fluoroscopic catheter tracking systemsExpert Rev Medl Dev20161343093111:CAS:528:DC%2BC28XjsFemtb0%3D10.1586/17434440.2016.1153969
– reference: HariharanSGStrobelNKaethnerCKowarschikMDemirciSAlbarqouniSFahrigRNavabNA photon recycling approach to the denoising of ultra-low dose X-ray sequencesInt J Comput Assist Radiol Surg2018138478542963748610.1007/s11548-018-1746-2
– reference: Ambrosini P, Ruijters D, Niessen WJ, Moelker A, van Walsum T (2017) Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 577–585
– reference: Zoni-BerissoMLercariFCarazzaTDomenicucciSEpidemiology of atrial fibrillation: European perspectiveClin Epidemiol2014621322024966695406495210.2147/CLEP.S47385
– reference: Javed S, Bouwmans T, Jung SK (2017) Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. In: Proceedings of the symposium on applied computing. ACM, pp 89–94
– reference: BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput Vis Image Underst2014122223410.1016/j.cviu.2013.11.009
– reference: WolterinkJMLeinerTViergeverMAIšgumIGenerative adversarial networks for noise reduction in low-dose CTIEEE Trans Med Imaging20173612253625452857434610.1109/TMI.2017.2708987
– reference: CoupéPHellierPKervrannCBarillotCNonlocal means-based speckle filtering for ultrasound imagesIEEE Trans Image Process200918102221222919482578278408110.1109/TIP.2009.2024064
– reference: Milletari F, Belagiannis V, Navab N, Fallavollita P (2014) Fully automatic catheter localization in c-arm images using ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-sparse coding. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Part II, pp 570–577
– reference: PanayiotouMRhodeKSKingAPMaYCooklinMNeillOMGillJHousdenCAHousdenRJImage-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for X-ray-guided cardiac electrophysiology proceduresPhys Med Biol2015602080871:CAS:528:DC%2BC28XmtVCgu7o%3D2642586010.1088/0031-9155/60/20/8087
– reference: SongWZhuJLiYChenCImage alignment by online robust PCA via stochastic gradient descentIEEE Trans Circuits Syst Video Technol20162671241125010.1109/TCSVT.2015.2455711
– reference: OtsuNA threshold selection method from gray-level histogramsAutomatica197511285–2962327
– reference: Zhan J, Lois B, Guo H, Vaswani, N (2016) Online (and offline) robust PCA: novel algorithms and performance guarantees. In: Artificial intelligence and statistics, pp 1488–1496
– reference: VaswaniNamrataBouwmansThierryJavedSajidNarayanamurthyPraneethRobust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace RecoveryIEEE Signal Processing Magazine2018354325510.1109/MSP.2018.2826566
– volume: 10
  start-page: 773
  issue: 6
  year: 2015
  ident: 1874_CR24
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-015-1217-y
– volume: 37
  start-page: 2749
  issue: 36
  year: 2016
  ident: 1874_CR10
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw223
– volume: 11
  start-page: 23
  issue: 285–296
  year: 1975
  ident: 1874_CR20
  publication-title: Automatica
– volume: 122
  start-page: 22
  year: 2014
  ident: 1874_CR4
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.11.009
– volume: 18
  start-page: 1406
  issue: 9
  year: 2015
  ident: 1874_CR3
  publication-title: Europace
  doi: 10.1093/europace/euv364
– volume: 21
  start-page: 476
  issue: 5
  year: 1999
  ident: 1874_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.765658
– ident: 1874_CR18
  doi: 10.1109/ICIP.2016.7532775
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1874_CR15
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 35
  start-page: 32
  issue: 4
  year: 2018
  ident: 1874_CR23
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2018.2826566
– volume: 13
  start-page: 103
  issue: 1–2
  year: 2002
  ident: 1874_CR25
  publication-title: J Vis Commun Image Represent
  doi: 10.1006/jvci.2001.0495
– ident: 1874_CR1
  doi: 10.1007/978-3-319-66185-8_65
– volume: 58
  start-page: 11
  issue: 3
  year: 2011
  ident: 1874_CR5
  publication-title: J ACM
  doi: 10.1145/1970392.1970395
– start-page: 130
  volume-title: Medical image computing and computer-assisted intervention—MICCAI’98
  year: 1998
  ident: 1874_CR9
  doi: 10.1007/BFb0056195
– volume: 18
  start-page: 2221
  issue: 10
  year: 2009
  ident: 1874_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2024064
– volume: 36
  start-page: 2536
  issue: 12
  year: 2017
  ident: 1874_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2708987
– volume: 13
  start-page: 309
  issue: 4
  year: 2016
  ident: 1874_CR17
  publication-title: Expert Rev Medl Dev
  doi: 10.1586/17434440.2016.1153969
– volume: 34
  start-page: 861
  issue: 4
  year: 2015
  ident: 1874_CR27
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2360988
– volume: 35
  start-page: 1565
  issue: 6
  year: 2016
  ident: 1874_CR2
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2520092
– volume: 40
  start-page: 071902
  issue: 7
  year: 2013
  ident: 1874_CR16
  publication-title: Med Phys
  doi: 10.1118/1.4808114
– volume: 175
  start-page: 216
  year: 2016
  ident: 1874_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.052
– volume: 26
  start-page: 1241
  issue: 7
  year: 2016
  ident: 1874_CR22
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2015.2455711
– ident: 1874_CR14
– volume: 40
  start-page: 947
  issue: 8
  year: 2017
  ident: 1874_CR7
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.13141
– ident: 1874_CR19
  doi: 10.1007/978-3-319-10470-6_71
– volume: 13
  start-page: 847
  year: 2018
  ident: 1874_CR11
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1746-2
– volume: 6
  start-page: 213
  year: 2014
  ident: 1874_CR29
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S47385
– ident: 1874_CR28
– ident: 1874_CR13
  doi: 10.1145/3019612.3019637
– volume: 60
  start-page: 8087
  issue: 20
  year: 2015
  ident: 1874_CR21
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/20/8087
SSID ssj0045735
Score 2.1641877
Snippet Purpose Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the...
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal...
PurposeClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms Ablation
Algorithms
Arrhythmia
Arrhythmias, Cardiac - diagnosis
Cardiac Catheters
Catheter Ablation - methods
Catheterization
Catheters
Coding
Computer Imaging
Computer Science
Electrodes
Electrophysiologic Techniques, Cardiac - methods
Electrophysiology
Fluoroscopy
Fluoroscopy - methods
Ground truth
Health Informatics
Humans
Image enhancement
Image setting
Imaging
Labels
Medical imaging
Medical personnel
Medicine
Medicine & Public Health
Myocardium
Original Article
Pattern Recognition and Graphics
Perturbation
Radiology
Robustness
Sequences
Surgery
Tracking
Vision
X ray imagery
Title Robust navigation support in lowest dose image setting
URI https://link.springer.com/article/10.1007/s11548-018-1874-8
https://www.ncbi.nlm.nih.gov/pubmed/30370499
https://www.proquest.com/docview/2177207993
https://www.proquest.com/docview/2126906589
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oA-LFZdzqMkTwpBTaNG2S4yAuKHoQB8ZTadIUBG0H2_r7fekyg7iApx6apuVled_X9_I9gFOleCaFYm6qfOEyiQRFot930ZvrSGdhJptfF_cP0c2E3U7DaXeOu-yz3fuQZLNTLw67WXSN1BdZj-DMFcswCK2aF07iCR332y8LeVNV0xeR70bMn4cyf-riqzP6hjC_RUcbp3O1CesdWiTjdni3YMnkQ9joKzGQbmEOYfW-C5FvQ_RYqLqsSJ58NOoZRU7KemZRNnnJyWthpRFIWpSGvLzhXkJK02Q-78Dk6vLp4sbtiiO4OuC0cgPKqeIy05oxzqXGq1ZaCU1pypI0QiggU99H9BZJnXk69RJDU50IbhUCWRTswkpe5GYfiOdpYZhIQmUU48YgZ00tNTFZEEiTcQe83kqx7pTDbQGL13iheWwNG6NhY2vYWDhwNn9k1spm_NX4qDd93K2gMkaqxKnHET45cDK_jXPfBjSS3BS1bUOtznIopAN77ZDN34aumVs658B5P4aLzn_9lIN_tT6ENcRPsk3iPoKV6r02x4hRKjWCwfj6-e5y1MzNT_Xp3Es
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaK9dHmUNrCAkThRZZU4TmwfUQUsj-WAFglOUew4EipNUJP00F_fcR67ojwkTjnEcZzxY74vM_4McKAUz6RQzE2VL1wmkaBI9PsuenMd6SzMZPPrYnoVTW7Y-W142-3jLvts9z4k2azUi81uFl0j9UXWIzhzxQdYZshP6ACWj07vLo77BZiFvDlX0xeR70bMnwczX6rkqTt6hjGfxUcbt3MyhFnf4Dbb5Oe4rtRY__1Py_GdX7QKnzsYSo7acbMGSyZfh2F_xAPpZvw6rEy72PsGRNeFqsuK5MmfRpajyElZP1r4Tu5z8lBYzQWSFqUh979wkSKlaVKqv8DNyfHsx8TtTl1wdcBp5QaUU8VlpjVjnEuNV620EprSlCVphBhDpr6PsDCSOvN06iWGpjoR3EoPsijYhEFe5OYbEM_TwjCRhMooxo1BMpxazmOyIJAm4w54vfFj3UmS25MxHuKFmLI1UYwmiq2JYuHA4fyRx1aP463Co75H425qljFyME49jrjMgf35bZxUNlKS5KaobRlqBZxDIR342o6E-dvQ53PLEx343vfqovJXm7L1rtJ78HEym17Gl2dXF9vwCUGabDPFRzCoftdmB4FQpXa7gf8Pauf6cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aLSy9JO3mUSebRIWeWkxsWbak49Jk2eZFKVnIzVgPQyC1l9ib35-RH7uEJIWcfLAsmxlJ830e6RuA70rxXArFfKNC4TOJBEVi3PcxmutE53Eum18XV9fJbM7Ob-Pbrs5p1e9271OS7ZkGp9JU1CcLk5-sD745pI00GBmQ4MwXG_CROZ0EHNBzOumXYhbzpsJmKJLQT1i4Smu-1sXzwPQCbb7IlDYBaPoZNjvkSCatq7_AB1uMYKuvykC6STqC4VWXLt-G5G-pllVNiuyxUdIoC1ItFw5xk7uC3JdOJoGYsrLk7h-uK6SyzS7oHZhPz25-zfyuUIKvI05rP6KcKi5zrRnjXGq8aqWV0JQalpkEYYE0YYhILpE6D7QJMkuNzgR3aoEsiXZhUJSF_QokCLSwTGSxsopxa5G_GkdTbB5F0ubcg6C3Uqo7FXFXzOI-XesfO8OmaNjUGTYVHvxYPbJoJTT-13jcmz7tZlOVIm3iNOAIpTz4trqN88AlN7LClkvXhjrN5VhID_Zal63ehmGaO2rnwc_eh-vO3_yU_Xe1Pobhn9Npevn7-uIAPiGsku3e7jEM6oelPUToUqujZng-AYbG4d8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+navigation+support+in+lowest+dose+image+setting&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Bui%2C+Mai&rft.au=Bourier%2C+Felix&rft.au=Baur%2C+Christoph&rft.au=Milletari%2C+Fausto&rft.date=2019-02-01&rft.eissn=1861-6429&rft.volume=14&rft.issue=2&rft.spage=291&rft_id=info:doi/10.1007%2Fs11548-018-1874-8&rft_id=info%3Apmid%2F30370499&rft.externalDocID=30370499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon