Robust navigation support in lowest dose image setting
Purpose Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventi...
        Saved in:
      
    
          | Published in | International journal for computer assisted radiology and surgery Vol. 14; no. 2; pp. 291 - 300 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.02.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1861-6410 1861-6429 1861-6429  | 
| DOI | 10.1007/s11548-018-1874-8 | 
Cover
| Abstract | Purpose
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.
Methods
In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on
ℓ
1
-sparse coding
and
online robust PCA (ORPCA)
. Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.
Results
We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of
86.9
%
.
Conclusion
Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on
ℓ
1
-sparse coding
and
online robust PCA (ORPCA)
, our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters. | 
    
|---|---|
| AbstractList | Purpose
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.
Methods
In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on
ℓ
1
-sparse coding
and
online robust PCA (ORPCA)
. Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.
Results
We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of
86.9
%
.
Conclusion
Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on
ℓ
1
-sparse coding
and
online robust PCA (ORPCA)
, our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters. PurposeClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.MethodsIn this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on ℓ1-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.ResultsWe have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of 86.9%.ConclusionBesides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on ℓ1-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters. Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff. In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures. We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text]. Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters. Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.PURPOSEClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.METHODSIn this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on [Formula: see text]-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text].RESULTSWe have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of [Formula: see text].Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.CONCLUSIONBesides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on [Formula: see text]-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.  | 
    
| Author | Milletari, Fausto Navab, Nassir Bui, Mai Demirci, Stefanie Baur, Christoph Bourier, Felix  | 
    
| Author_xml | – sequence: 1 givenname: Mai orcidid: 0000-0002-4509-8473 surname: Bui fullname: Bui, Mai email: mai.bui@tum.de organization: Computer Aided Medical Procedures, Technische Universität München – sequence: 2 givenname: Felix surname: Bourier fullname: Bourier, Felix organization: Deutsches Herzzentrum München – sequence: 3 givenname: Christoph surname: Baur fullname: Baur, Christoph organization: Computer Aided Medical Procedures, Technische Universität München – sequence: 4 givenname: Fausto surname: Milletari fullname: Milletari, Fausto organization: Computer Aided Medical Procedures, Technische Universität München – sequence: 5 givenname: Nassir surname: Navab fullname: Navab, Nassir organization: Computer Aided Medical Procedures, Technische Universität München – sequence: 6 givenname: Stefanie surname: Demirci fullname: Demirci, Stefanie organization: Computer Aided Medical Procedures, Technische Universität München  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30370499$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kMtKxDAUhoMozkUfwI0U3LipJmmay1IGbzAgiK5DmqalQyepSav49mbsjMKArk4g33_4zzcDh9ZZA8AZglcIQnYdEMoJTyHiKeKMpPwATBGnKKUEi8OfN4ITMAthBSHJWZYfg0kGMwaJEFNAn10xhD6x6r2pVd84m4Sh65zvk8Ymrfsw8bN0wSTNWtUmCabvG1ufgKNKtcGcbuccvN7dviwe0uXT_ePiZpnqjOE-zTDDBROV1oQwJnScutAF1xiXRJUUslyUCGUIUqErqEuoDC614kxgignN5uBy3Nt59zbELnLdBG3aVlnjhiAxwlRAmnMR0Ys9dOUGb2O7SDGGIRMii9T5lhqKtSll5-Nd_lPujESAjYD2LgRvKqmb_ltM71XTSgTlxr0c3cvoXm7cSx6TaC-5W_5fBo-ZEFlbG_9b-u_QF27OlDE | 
    
| CitedBy_id | crossref_primary_10_1016_j_jelectrocard_2022_04_002 crossref_primary_10_1016_j_media_2022_102584  | 
    
| Cites_doi | 10.1007/s11548-015-1217-y 10.1093/eurheartj/ehw223 10.1016/j.cviu.2013.11.009 10.1093/europace/euv364 10.1109/34.765658 10.1109/ICIP.2016.7532775 10.1023/B:VISI.0000029664.99615.94 10.1109/MSP.2018.2826566 10.1006/jvci.2001.0495 10.1007/978-3-319-66185-8_65 10.1145/1970392.1970395 10.1007/BFb0056195 10.1109/TIP.2009.2024064 10.1109/TMI.2017.2708987 10.1586/17434440.2016.1153969 10.1109/TMI.2014.2360988 10.1109/TMI.2016.2520092 10.1118/1.4808114 10.1016/j.neucom.2015.10.052 10.1109/TCSVT.2015.2455711 10.1111/pace.13141 10.1007/978-3-319-10470-6_71 10.1007/s11548-018-1746-2 10.2147/CLEP.S47385 10.1145/3019612.3019637 10.1088/0031-9155/60/20/8087  | 
    
| ContentType | Journal Article | 
    
| Copyright | CARS 2018 2018© CARS 2018  | 
    
| Copyright_xml | – notice: CARS 2018 – notice: 2018© CARS 2018  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8  | 
    
| DOI | 10.1007/s11548-018-1874-8 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Computer Science  | 
    
| EISSN | 1861-6429 | 
    
| EndPage | 300 | 
    
| ExternalDocumentID | 30370499 10_1007_s11548_018_1874_8  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -5E -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 -Y2 2VQ AANXM AARHV AAYXX AAYZH ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF EN4 H13 IHE N2Q O9- S1Z CGR CUY CVF ECM EIF NPM K9. 7X8  | 
    
| ID | FETCH-LOGICAL-c372t-3272b79fcc44779ccc4cbcb8c22d4ad60759d1131069cf0cd0ae2dca879262463 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1861-6410 1861-6429  | 
    
| IngestDate | Fri Sep 05 11:48:42 EDT 2025 Tue Oct 07 06:53:42 EDT 2025 Thu Apr 03 06:55:31 EDT 2025 Wed Oct 01 00:20:32 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Fri Feb 21 02:42:13 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Online tracking Electrode tracking Fluoroscopy Online robust PCA Sparse coding Computer-assisted electrophysiology  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-3272b79fcc44779ccc4cbcb8c22d4ad60759d1131069cf0cd0ae2dca879262463 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-4509-8473 | 
    
| PMID | 30370499 | 
    
| PQID | 2177207993 | 
    
| PQPubID | 2043910 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_2126906589 proquest_journals_2177207993 pubmed_primary_30370499 crossref_citationtrail_10_1007_s11548_018_1874_8 crossref_primary_10_1007_s11548_018_1874_8 springer_journals_10_1007_s11548_018_1874_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-02-01 | 
    
| PublicationDateYYYYMMDD | 2019-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg  | 
    
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy | 
    
| PublicationTitle | International journal for computer assisted radiology and surgery | 
    
| PublicationTitleAbbrev | Int J CARS | 
    
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Zoni-BerissoMLercariFCarazzaTDomenicucciSEpidemiology of atrial fibrillation: European perspectiveClin Epidemiol2014621322024966695406495210.2147/CLEP.S47385 FrangiAFNiessenWJVinckenKLViergeverMAWellsWMColchesterADelpSMultiscale vessel enhancement filteringMedical image computing and computer-assisted intervention—MICCAI’981998BerlinSpringer13013710.1007/BFb0056195 GaitaFGuerraPGBattagliaAAnselminoMThe dream of near-zero X-rays ablation comes trueEur Heart J20163736274927552735405310.1093/eurheartj/ehw223 WeickertJScharrHA scheme for coherence-enhancing diffusion filtering with optimized rotation invarianceJ Vis Commun Image Represent2002131–210311810.1006/jvci.2001.0495 VolpiDSarhanMHGhotbiRNavabNMateusDDemirciSOnline tracking of interventional devices for endovascular aortic repairInt J Comput Assist Radiol Surg20151067737812597683210.1007/s11548-015-1217-y CandèsEJLiXMaYWrightJRobust principal component analysis?J ACM20115831110.1145/1970392.1970395 PanayiotouMRhodeKSKingAPMaYCooklinMNeillOMGillJHousdenCAHousdenRJImage-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for X-ray-guided cardiac electrophysiology proceduresPhys Med Biol2015602080871:CAS:528:DC%2BC28XmtVCgu7o%3D2642586010.1088/0031-9155/60/20/8087 FitzgibbonAPiluMFisherRBDirect least square fitting of ellipsesIEEE Trans Pattern Anal Mach Intell199921547648010.1109/34.765658 WolterinkJMLeinerTViergeverMAIšgumIGenerative adversarial networks for noise reduction in low-dose CTIEEE Trans Med Imaging20173612253625452857434610.1109/TMI.2017.2708987 BourierFReentsTAmmar-BuschSBuiattiAKottmaierMSemmlerVTelishevskaMBrkicAGrebmerCLennerzCKolbCHesslingGDeisenhoferIEvaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology proceduresEuropace20151891406141026589627540003110.1093/europace/euv364 HariharanSGStrobelNKaethnerCKowarschikMDemirciSAlbarqouniSFahrigRNavabNA photon recycling approach to the denoising of ultra-low dose X-ray sequencesInt J Comput Assist Radiol Surg2018138478542963748610.1007/s11548-018-1746-2 OtsuNA threshold selection method from gray-level histogramsAutomatica197511285–2962327 VaswaniNamrataBouwmansThierryJavedSajidNarayanamurthyPraneethRobust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace RecoveryIEEE Signal Processing Magazine2018354325510.1109/MSP.2018.2826566 CrowhurstJHaqqaniHWrightDWhitbyMLeeABettsJDenmanRUltra low radiation dose during electrophysiology procedures using optimised new generation fluoroscopy technologyPacing Clin Electrophysiol20174089479542861803610.1111/pace.13141 Matviychuk Y, Mailhé B, Chen X, Wang Q, Kiraly A, Strobel N, Nadar M (2016) Learning a multiscale patch-based representation for image denoising in X-ray fluoroscopy. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2330–2334 Milletari F, Belagiannis V, Navab N, Fallavollita P (2014) Fully automatic catheter localization in c-arm images using ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-sparse coding. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Part II, pp 570–577 HongBWeiLHuYCaiDHeXOnline robust principal component analysis via truncated nuclear norm regularizationNeurocomputing201617521622210.1016/j.neucom.2015.10.052 MaYGoginNCathierPHousdenRJGijsbersGCooklinMO’NeillMGillJRinaldiCARazaviRRhodeKSReal-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventionsMed Phys20134070719022382243910.1118/1.4808114 Javed S, Oh SH, Sobral A, Bouwmans T, Jung SK. (2014) OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In: Asian conference on computer vision. Springer, pp 284–299 SongWZhuJLiYChenCImage alignment by online robust PCA via stochastic gradient descentIEEE Trans Circuits Syst Video Technol20162671241125010.1109/TCSVT.2015.2455711 Ambrosini P, Ruijters D, Niessen WJ, Moelker A, van Walsum T (2017) Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 577–585 BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput Vis Image Underst2014122223410.1016/j.cviu.2013.11.009 WuXHousdenJMaYRazaviBRhodeKRueckertDFast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventionsIEEE Trans Med Imaging20153448618762529179010.1109/TMI.2014.2360988 Javed S, Bouwmans T, Jung SK (2017) Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. In: Proceedings of the symposium on applied computing. ACM, pp 89–94 AmiotCGirardCChanussotJPescatoreJDesvignesMSpatio-temporal multiscale denoising of fluoroscopic sequenceIEEE Trans Med Imaging2016356156515742681270510.1109/TMI.2016.2520092 Zhan J, Lois B, Guo H, Vaswani, N (2016) Online (and offline) robust PCA: novel algorithms and performance guarantees. In: Artificial intelligence and statistics, pp 1488–1496 CoupéPHellierPKervrannCBarillotCNonlocal means-based speckle filtering for ultrasound imagesIEEE Trans Image Process200918102221222919482578278408110.1109/TIP.2009.2024064 MacleLThibaultBAndradeJGCardiac electrophysiology procedures guided by novel non-fluoroscopic catheter tracking systemsExpert Rev Medl Dev20161343093111:CAS:528:DC%2BC28XjsFemtb0%3D10.1586/17434440.2016.1153969 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 J Weickert (1874_CR25) 2002; 13 1874_CR13 A Fitzgibbon (1874_CR8) 1999; 21 1874_CR14 W Song (1874_CR22) 2016; 26 T Bouwmans (1874_CR4) 2014; 122 M Panayiotou (1874_CR21) 2015; 60 F Bourier (1874_CR3) 2015; 18 X Wu (1874_CR27) 2015; 34 1874_CR18 L Macle (1874_CR17) 2016; 13 1874_CR19 B Hong (1874_CR12) 2016; 175 D Volpi (1874_CR24) 2015; 10 JM Wolterink (1874_CR26) 2017; 36 DG Lowe (1874_CR15) 2004; 60 M Zoni-Berisso (1874_CR29) 2014; 6 EJ Candès (1874_CR5) 2011; 58 N Otsu (1874_CR20) 1975; 11 C Amiot (1874_CR2) 2016; 35 Y Ma (1874_CR16) 2013; 40 J Crowhurst (1874_CR7) 2017; 40 F Gaita (1874_CR10) 2016; 37 SG Hariharan (1874_CR11) 2018; 13 Namrata Vaswani (1874_CR23) 2018; 35 P Coupé (1874_CR6) 2009; 18 1874_CR28 1874_CR1 AF Frangi (1874_CR9) 1998  | 
    
| References_xml | – reference: Matviychuk Y, Mailhé B, Chen X, Wang Q, Kiraly A, Strobel N, Nadar M (2016) Learning a multiscale patch-based representation for image denoising in X-ray fluoroscopy. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2330–2334 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 – reference: MaYGoginNCathierPHousdenRJGijsbersGCooklinMO’NeillMGillJRinaldiCARazaviRRhodeKSReal-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventionsMed Phys20134070719022382243910.1118/1.4808114 – reference: HongBWeiLHuYCaiDHeXOnline robust principal component analysis via truncated nuclear norm regularizationNeurocomputing201617521622210.1016/j.neucom.2015.10.052 – reference: VolpiDSarhanMHGhotbiRNavabNMateusDDemirciSOnline tracking of interventional devices for endovascular aortic repairInt J Comput Assist Radiol Surg20151067737812597683210.1007/s11548-015-1217-y – reference: WeickertJScharrHA scheme for coherence-enhancing diffusion filtering with optimized rotation invarianceJ Vis Commun Image Represent2002131–210311810.1006/jvci.2001.0495 – reference: BourierFReentsTAmmar-BuschSBuiattiAKottmaierMSemmlerVTelishevskaMBrkicAGrebmerCLennerzCKolbCHesslingGDeisenhoferIEvaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology proceduresEuropace20151891406141026589627540003110.1093/europace/euv364 – reference: Javed S, Oh SH, Sobral A, Bouwmans T, Jung SK. (2014) OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In: Asian conference on computer vision. Springer, pp 284–299 – reference: WuXHousdenJMaYRazaviBRhodeKRueckertDFast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventionsIEEE Trans Med Imaging20153448618762529179010.1109/TMI.2014.2360988 – reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J ACM20115831110.1145/1970392.1970395 – reference: AmiotCGirardCChanussotJPescatoreJDesvignesMSpatio-temporal multiscale denoising of fluoroscopic sequenceIEEE Trans Med Imaging2016356156515742681270510.1109/TMI.2016.2520092 – reference: GaitaFGuerraPGBattagliaAAnselminoMThe dream of near-zero X-rays ablation comes trueEur Heart J20163736274927552735405310.1093/eurheartj/ehw223 – reference: FrangiAFNiessenWJVinckenKLViergeverMAWellsWMColchesterADelpSMultiscale vessel enhancement filteringMedical image computing and computer-assisted intervention—MICCAI’981998BerlinSpringer13013710.1007/BFb0056195 – reference: FitzgibbonAPiluMFisherRBDirect least square fitting of ellipsesIEEE Trans Pattern Anal Mach Intell199921547648010.1109/34.765658 – reference: CrowhurstJHaqqaniHWrightDWhitbyMLeeABettsJDenmanRUltra low radiation dose during electrophysiology procedures using optimised new generation fluoroscopy technologyPacing Clin Electrophysiol20174089479542861803610.1111/pace.13141 – reference: MacleLThibaultBAndradeJGCardiac electrophysiology procedures guided by novel non-fluoroscopic catheter tracking systemsExpert Rev Medl Dev20161343093111:CAS:528:DC%2BC28XjsFemtb0%3D10.1586/17434440.2016.1153969 – reference: HariharanSGStrobelNKaethnerCKowarschikMDemirciSAlbarqouniSFahrigRNavabNA photon recycling approach to the denoising of ultra-low dose X-ray sequencesInt J Comput Assist Radiol Surg2018138478542963748610.1007/s11548-018-1746-2 – reference: Ambrosini P, Ruijters D, Niessen WJ, Moelker A, van Walsum T (2017) Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 577–585 – reference: Zoni-BerissoMLercariFCarazzaTDomenicucciSEpidemiology of atrial fibrillation: European perspectiveClin Epidemiol2014621322024966695406495210.2147/CLEP.S47385 – reference: Javed S, Bouwmans T, Jung SK (2017) Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. In: Proceedings of the symposium on applied computing. ACM, pp 89–94 – reference: BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput Vis Image Underst2014122223410.1016/j.cviu.2013.11.009 – reference: WolterinkJMLeinerTViergeverMAIšgumIGenerative adversarial networks for noise reduction in low-dose CTIEEE Trans Med Imaging20173612253625452857434610.1109/TMI.2017.2708987 – reference: CoupéPHellierPKervrannCBarillotCNonlocal means-based speckle filtering for ultrasound imagesIEEE Trans Image Process200918102221222919482578278408110.1109/TIP.2009.2024064 – reference: Milletari F, Belagiannis V, Navab N, Fallavollita P (2014) Fully automatic catheter localization in c-arm images using ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-sparse coding. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Part II, pp 570–577 – reference: PanayiotouMRhodeKSKingAPMaYCooklinMNeillOMGillJHousdenCAHousdenRJImage-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for X-ray-guided cardiac electrophysiology proceduresPhys Med Biol2015602080871:CAS:528:DC%2BC28XmtVCgu7o%3D2642586010.1088/0031-9155/60/20/8087 – reference: SongWZhuJLiYChenCImage alignment by online robust PCA via stochastic gradient descentIEEE Trans Circuits Syst Video Technol20162671241125010.1109/TCSVT.2015.2455711 – reference: OtsuNA threshold selection method from gray-level histogramsAutomatica197511285–2962327 – reference: Zhan J, Lois B, Guo H, Vaswani, N (2016) Online (and offline) robust PCA: novel algorithms and performance guarantees. In: Artificial intelligence and statistics, pp 1488–1496 – reference: VaswaniNamrataBouwmansThierryJavedSajidNarayanamurthyPraneethRobust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace RecoveryIEEE Signal Processing Magazine2018354325510.1109/MSP.2018.2826566 – volume: 10 start-page: 773 issue: 6 year: 2015 ident: 1874_CR24 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-015-1217-y – volume: 37 start-page: 2749 issue: 36 year: 2016 ident: 1874_CR10 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw223 – volume: 11 start-page: 23 issue: 285–296 year: 1975 ident: 1874_CR20 publication-title: Automatica – volume: 122 start-page: 22 year: 2014 ident: 1874_CR4 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.11.009 – volume: 18 start-page: 1406 issue: 9 year: 2015 ident: 1874_CR3 publication-title: Europace doi: 10.1093/europace/euv364 – volume: 21 start-page: 476 issue: 5 year: 1999 ident: 1874_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.765658 – ident: 1874_CR18 doi: 10.1109/ICIP.2016.7532775 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 1874_CR15 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 35 start-page: 32 issue: 4 year: 2018 ident: 1874_CR23 publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2018.2826566 – volume: 13 start-page: 103 issue: 1–2 year: 2002 ident: 1874_CR25 publication-title: J Vis Commun Image Represent doi: 10.1006/jvci.2001.0495 – ident: 1874_CR1 doi: 10.1007/978-3-319-66185-8_65 – volume: 58 start-page: 11 issue: 3 year: 2011 ident: 1874_CR5 publication-title: J ACM doi: 10.1145/1970392.1970395 – start-page: 130 volume-title: Medical image computing and computer-assisted intervention—MICCAI’98 year: 1998 ident: 1874_CR9 doi: 10.1007/BFb0056195 – volume: 18 start-page: 2221 issue: 10 year: 2009 ident: 1874_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2024064 – volume: 36 start-page: 2536 issue: 12 year: 2017 ident: 1874_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2708987 – volume: 13 start-page: 309 issue: 4 year: 2016 ident: 1874_CR17 publication-title: Expert Rev Medl Dev doi: 10.1586/17434440.2016.1153969 – volume: 34 start-page: 861 issue: 4 year: 2015 ident: 1874_CR27 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2360988 – volume: 35 start-page: 1565 issue: 6 year: 2016 ident: 1874_CR2 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2520092 – volume: 40 start-page: 071902 issue: 7 year: 2013 ident: 1874_CR16 publication-title: Med Phys doi: 10.1118/1.4808114 – volume: 175 start-page: 216 year: 2016 ident: 1874_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.052 – volume: 26 start-page: 1241 issue: 7 year: 2016 ident: 1874_CR22 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2015.2455711 – ident: 1874_CR14 – volume: 40 start-page: 947 issue: 8 year: 2017 ident: 1874_CR7 publication-title: Pacing Clin Electrophysiol doi: 10.1111/pace.13141 – ident: 1874_CR19 doi: 10.1007/978-3-319-10470-6_71 – volume: 13 start-page: 847 year: 2018 ident: 1874_CR11 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1746-2 – volume: 6 start-page: 213 year: 2014 ident: 1874_CR29 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S47385 – ident: 1874_CR28 – ident: 1874_CR13 doi: 10.1145/3019612.3019637 – volume: 60 start-page: 8087 issue: 20 year: 2015 ident: 1874_CR21 publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/20/8087  | 
    
| SSID | ssj0045735 | 
    
| Score | 2.1641877 | 
    
| Snippet | Purpose
Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the... Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal... PurposeClinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the...  | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 291 | 
    
| SubjectTerms | Ablation Algorithms Arrhythmia Arrhythmias, Cardiac - diagnosis Cardiac Catheters Catheter Ablation - methods Catheterization Catheters Coding Computer Imaging Computer Science Electrodes Electrophysiologic Techniques, Cardiac - methods Electrophysiology Fluoroscopy Fluoroscopy - methods Ground truth Health Informatics Humans Image enhancement Image setting Imaging Labels Medical imaging Medical personnel Medicine Medicine & Public Health Myocardium Original Article Pattern Recognition and Graphics Perturbation Radiology Robustness Sequences Surgery Tracking Vision X ray imagery  | 
    
| Title | Robust navigation support in lowest dose image setting | 
    
| URI | https://link.springer.com/article/10.1007/s11548-018-1874-8 https://www.ncbi.nlm.nih.gov/pubmed/30370499 https://www.proquest.com/docview/2177207993 https://www.proquest.com/docview/2126906589  | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: U2A dateStart: 20060625 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oA-LFZdzqMkTwpBTaNG2S4yAuKHoQB8ZTadIUBG0H2_r7fekyg7iApx6apuVled_X9_I9gFOleCaFYm6qfOEyiQRFot930ZvrSGdhJptfF_cP0c2E3U7DaXeOu-yz3fuQZLNTLw67WXSN1BdZj-DMFcswCK2aF07iCR332y8LeVNV0xeR70bMn4cyf-riqzP6hjC_RUcbp3O1CesdWiTjdni3YMnkQ9joKzGQbmEOYfW-C5FvQ_RYqLqsSJ58NOoZRU7KemZRNnnJyWthpRFIWpSGvLzhXkJK02Q-78Dk6vLp4sbtiiO4OuC0cgPKqeIy05oxzqXGq1ZaCU1pypI0QiggU99H9BZJnXk69RJDU50IbhUCWRTswkpe5GYfiOdpYZhIQmUU48YgZ00tNTFZEEiTcQe83kqx7pTDbQGL13iheWwNG6NhY2vYWDhwNn9k1spm_NX4qDd93K2gMkaqxKnHET45cDK_jXPfBjSS3BS1bUOtznIopAN77ZDN34aumVs658B5P4aLzn_9lIN_tT6ENcRPsk3iPoKV6r02x4hRKjWCwfj6-e5y1MzNT_Xp3Es | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaK9dHmUNrCAkThRZZU4TmwfUQUsj-WAFglOUew4EipNUJP00F_fcR67ojwkTjnEcZzxY74vM_4McKAUz6RQzE2VL1wmkaBI9PsuenMd6SzMZPPrYnoVTW7Y-W142-3jLvts9z4k2azUi81uFl0j9UXWIzhzxQdYZshP6ACWj07vLo77BZiFvDlX0xeR70bMnwczX6rkqTt6hjGfxUcbt3MyhFnf4Dbb5Oe4rtRY__1Py_GdX7QKnzsYSo7acbMGSyZfh2F_xAPpZvw6rEy72PsGRNeFqsuK5MmfRpajyElZP1r4Tu5z8lBYzQWSFqUh979wkSKlaVKqv8DNyfHsx8TtTl1wdcBp5QaUU8VlpjVjnEuNV620EprSlCVphBhDpr6PsDCSOvN06iWGpjoR3EoPsijYhEFe5OYbEM_TwjCRhMooxo1BMpxazmOyIJAm4w54vfFj3UmS25MxHuKFmLI1UYwmiq2JYuHA4fyRx1aP463Co75H425qljFyME49jrjMgf35bZxUNlKS5KaobRlqBZxDIR342o6E-dvQ53PLEx343vfqovJXm7L1rtJ78HEym17Gl2dXF9vwCUGabDPFRzCoftdmB4FQpXa7gf8Pauf6cg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aLSy9JO3mUSebRIWeWkxsWbak49Jk2eZFKVnIzVgPQyC1l9ib35-RH7uEJIWcfLAsmxlJ830e6RuA70rxXArFfKNC4TOJBEVi3PcxmutE53Eum18XV9fJbM7Ob-Pbrs5p1e9271OS7ZkGp9JU1CcLk5-sD745pI00GBmQ4MwXG_CROZ0EHNBzOumXYhbzpsJmKJLQT1i4Smu-1sXzwPQCbb7IlDYBaPoZNjvkSCatq7_AB1uMYKuvykC6STqC4VWXLt-G5G-pllVNiuyxUdIoC1ItFw5xk7uC3JdOJoGYsrLk7h-uK6SyzS7oHZhPz25-zfyuUIKvI05rP6KcKi5zrRnjXGq8aqWV0JQalpkEYYE0YYhILpE6D7QJMkuNzgR3aoEsiXZhUJSF_QokCLSwTGSxsopxa5G_GkdTbB5F0ubcg6C3Uqo7FXFXzOI-XesfO8OmaNjUGTYVHvxYPbJoJTT-13jcmz7tZlOVIm3iNOAIpTz4trqN88AlN7LClkvXhjrN5VhID_Zal63ehmGaO2rnwc_eh-vO3_yU_Xe1Pobhn9Npevn7-uIAPiGsku3e7jEM6oelPUToUqujZng-AYbG4d8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+navigation+support+in+lowest+dose+image+setting&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Bui%2C+Mai&rft.au=Bourier%2C+Felix&rft.au=Baur%2C+Christoph&rft.au=Milletari%2C+Fausto&rft.date=2019-02-01&rft.eissn=1861-6429&rft.volume=14&rft.issue=2&rft.spage=291&rft_id=info:doi/10.1007%2Fs11548-018-1874-8&rft_id=info%3Apmid%2F30370499&rft.externalDocID=30370499 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |