Finite element simulations of compositionally graded InGaN solar cells

The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In x Ga 1− x N heterojunction removes a barrier for hole transport into GaN and incre...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 94; no. 3; pp. 478 - 483
Main Authors Brown, G.F., Ager, J.W., Walukiewicz, W., Wu, J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2010
Subjects
Online AccessGet full text
ISSN0927-0248
1879-3398
DOI10.1016/j.solmat.2009.11.010

Cover

Abstract The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In x Ga 1− x N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In x Ga 1− x N/n-In 0.5Ga 0.5N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells.
AbstractList The solar power conversion efficiency of compositionally graded In sub(x)Ga sub(1-x)N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In sub(x)Ga sub(1-x)N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In sub(x)Ga sub(1-x)N/n-In sub(0.5)Ga sub(0.5)N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells.
The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In x Ga 1− x N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In x Ga 1− x N/n-In 0.5Ga 0.5N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells.
Author Brown, G.F.
Wu, J.
Walukiewicz, W.
Ager, J.W.
Author_xml – sequence: 1
  givenname: G.F.
  surname: Brown
  fullname: Brown, G.F.
  email: gregory.f.brown@gmail.com
  organization: Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA
– sequence: 2
  givenname: J.W.
  surname: Ager
  fullname: Ager, J.W.
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
– sequence: 3
  givenname: W.
  surname: Walukiewicz
  fullname: Walukiewicz, W.
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
– sequence: 4
  givenname: J.
  surname: Wu
  fullname: Wu, J.
  organization: Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA
BookMark eNqFkMFq3DAQhkVJoJukb9CDb83Fzoxly3IPgRKyyUJoL-1ZyNK4aJGtraQt5O1rZ3PKIT0NA__3z_BdsLM5zMTYZ4QKAcXNvkrBTzpXNUBfIVaA8IFtUHZ9yXkvz9gG-roroW7kR3aR0h4AasGbDdtu3ewyFeRpojkXyU1Hr7MLcyrCWJgwHUJy6669fy5-R23JFrv5QX8vlqM6Foa8T1fsfNQ-0afXecl-be9_3j2WTz8ednffnkrDO8ylARywNo3VFmDgLRejaFuyYqjb2kquYWhGydffJG8k2HYALozRtRgb3vf8kn059R5i-HOklNXk0vqBnikck5Jt2yEXnViS1-8mses6ROhls0SbU9TEkFKkUR2im3R8VghqFaz26iRYrYIVoloEL9jXN5hx-UVdjtr5_8G3J5gWW38dRZWMo9mQdZFMVja49wv-AbaBmsY
CitedBy_id crossref_primary_10_1007_s00339_012_7062_8
crossref_primary_10_1007_s11082_016_0775_8
crossref_primary_10_1007_s11082_014_9968_1
crossref_primary_10_1039_C8RA03127D
crossref_primary_10_1016_j_pquantelec_2014_12_001
crossref_primary_10_1007_s11664_014_3615_2
crossref_primary_10_3390_en16083483
crossref_primary_10_1109_JPHOTOV_2017_2775164
crossref_primary_10_1016_j_matlet_2013_01_011
crossref_primary_10_1007_s11082_020_02518_y
crossref_primary_10_1016_j_spmi_2016_05_020
crossref_primary_10_1088_1674_1056_25_10_108801
crossref_primary_10_1007_s11082_020_02709_7
crossref_primary_10_1016_j_solener_2024_112555
crossref_primary_10_1016_j_mssp_2015_08_011
crossref_primary_10_3389_fmats_2022_1006071
crossref_primary_10_1088_0022_3727_49_48_485102
crossref_primary_10_1016_j_mtener_2020_100457
crossref_primary_10_1088_1674_4926_38_9_092001
crossref_primary_10_1364_OME_3_001777
crossref_primary_10_1149_2_009206jes
crossref_primary_10_1016_j_spmi_2017_05_014
crossref_primary_10_1088_1674_1056_22_8_088401
crossref_primary_10_1016_j_jlumin_2021_118411
crossref_primary_10_1109_LED_2012_2237376
crossref_primary_10_1016_j_mseb_2024_117194
crossref_primary_10_1007_s10825_021_01695_7
crossref_primary_10_15251_JOR_2022_186_753
crossref_primary_10_1016_j_ijleo_2015_12_037
crossref_primary_10_1364_OE_28_011806
crossref_primary_10_1109_JQE_2012_2225601
crossref_primary_10_1557_s43579_021_00050_y
crossref_primary_10_1109_TNANO_2020_3025481
crossref_primary_10_1186_s11671_020_03392_z
crossref_primary_10_1007_s12648_016_0836_7
crossref_primary_10_1016_j_solmat_2014_07_018
crossref_primary_10_1063_1_4757990
crossref_primary_10_1007_s11664_014_3454_1
crossref_primary_10_1002_pssa_201026489
crossref_primary_10_1021_nl503616w
crossref_primary_10_1051_epjpv_2018011
crossref_primary_10_1155_2015_594858
crossref_primary_10_1016_j_mseb_2012_10_033
crossref_primary_10_1016_j_physb_2021_413577
crossref_primary_10_1007_s12209_017_0058_x
crossref_primary_10_1016_j_cplett_2020_137500
crossref_primary_10_1088_1674_4926_38_4_044002
crossref_primary_10_1142_S0217984924500714
crossref_primary_10_1007_s11082_013_9740_y
crossref_primary_10_1016_j_ijleo_2018_02_106
crossref_primary_10_1109_JPHOT_2015_2392374
crossref_primary_10_1007_s10854_014_1709_5
crossref_primary_10_1007_s11664_020_08033_w
crossref_primary_10_1007_s11082_015_0204_4
crossref_primary_10_1088_1361_6528_acf474
crossref_primary_10_1007_s11082_017_0970_2
crossref_primary_10_7498_aps_68_20191042
crossref_primary_10_1063_1_4829443
crossref_primary_10_1088_0268_1242_27_3_035019
crossref_primary_10_1088_0268_1242_28_5_055012
crossref_primary_10_1016_j_solmat_2021_111446
crossref_primary_10_1109_JPHOTOV_2012_2213073
crossref_primary_10_1007_s10825_019_01333_3
crossref_primary_10_1109_JQE_2016_2643289
crossref_primary_10_1088_0022_3727_49_29_295102
crossref_primary_10_1007_s11837_021_04716_9
crossref_primary_10_1016_j_mssp_2015_07_009
crossref_primary_10_1021_acsami_8b22569
crossref_primary_10_1016_j_spmi_2017_04_025
crossref_primary_10_1117_1_JNP_12_043505
crossref_primary_10_1038_s41560_024_01470_5
crossref_primary_10_1088_1402_4896_ada3fe
crossref_primary_10_1109_TED_2022_3208081
crossref_primary_10_1016_j_spmi_2012_10_004
crossref_primary_10_1007_s11082_011_9458_7
crossref_primary_10_1002_pssa_201100154
crossref_primary_10_1007_s12633_016_9430_z
crossref_primary_10_3390_photonics3010005
crossref_primary_10_1007_s11664_023_10662_w
crossref_primary_10_1063_5_0076833
crossref_primary_10_1016_j_optmat_2013_03_024
crossref_primary_10_1016_j_mseb_2012_01_010
crossref_primary_10_1016_j_solener_2017_08_074
crossref_primary_10_1116_6_0001841
crossref_primary_10_1007_s11082_013_9665_5
crossref_primary_10_1016_j_mtener_2022_101229
crossref_primary_10_1007_s12596_024_02045_z
crossref_primary_10_1109_JPHOTOV_2013_2292748
crossref_primary_10_3390_nano14010104
crossref_primary_10_3390_s19204386
crossref_primary_10_1007_s11082_015_0306_z
crossref_primary_10_1016_j_spmi_2017_04_014
crossref_primary_10_1016_j_enconman_2016_04_059
crossref_primary_10_1016_j_spmi_2016_09_016
crossref_primary_10_1016_j_solmat_2022_111766
crossref_primary_10_1134_S1063739714080071
crossref_primary_10_1063_5_0007034
crossref_primary_10_1016_j_solener_2019_07_090
crossref_primary_10_1016_j_mee_2014_11_018
crossref_primary_10_1109_JSTQE_2010_2090342
crossref_primary_10_1021_cs501399a
crossref_primary_10_1155_2014_819637
crossref_primary_10_1063_1_4745043
crossref_primary_10_1109_JPHOTOV_2013_2252953
crossref_primary_10_1063_1_4891990
crossref_primary_10_1039_D1NA00127B
crossref_primary_10_1088_0256_307X_28_1_018401
crossref_primary_10_1117_1_OE_55_10_107102
crossref_primary_10_1002_ese3_436
crossref_primary_10_1186_1556_276X_9_652
crossref_primary_10_1364_OE_22_0A1334
crossref_primary_10_1155_2012_910256
crossref_primary_10_1515_ehs_2014_0012
crossref_primary_10_3390_ma6031050
crossref_primary_10_1149_2_0292001JSS
crossref_primary_10_1007_s10854_019_00714_5
crossref_primary_10_1007_s12596_019_00536_y
crossref_primary_10_1007_s00339_016_0146_0
crossref_primary_10_3390_en16062524
crossref_primary_10_1016_j_micrna_2023_207538
crossref_primary_10_1109_TED_2013_2285573
crossref_primary_10_1016_j_jlumin_2022_119597
crossref_primary_10_1016_j_physb_2010_10_020
crossref_primary_10_1002_pip_978
crossref_primary_10_1002_aenm_201700522
crossref_primary_10_1016_j_physb_2021_413495
crossref_primary_10_1109_JPHOTOV_2012_2193384
crossref_primary_10_1016_j_solmat_2023_112662
crossref_primary_10_1016_j_spmi_2019_05_004
crossref_primary_10_1007_s40095_017_0243_7
crossref_primary_10_1007_s12633_021_01003_9
crossref_primary_10_1016_j_solmat_2016_10_007
crossref_primary_10_7567_JJAP_54_054301
crossref_primary_10_1016_j_mssp_2015_09_001
crossref_primary_10_1016_j_rser_2017_07_022
crossref_primary_10_1142_S0217984923500409
crossref_primary_10_1002_pssa_201330030
crossref_primary_10_1016_j_mseb_2023_116740
crossref_primary_10_1109_JQE_2011_2181972
crossref_primary_10_2109_jcersj2_120_25
crossref_primary_10_1364_OL_36_003500
crossref_primary_10_1002_pip_2807
crossref_primary_10_1016_j_ijleo_2020_165403
crossref_primary_10_1016_j_cattod_2016_01_023
crossref_primary_10_1063_5_0021811
crossref_primary_10_1007_s10853_012_6321_6
crossref_primary_10_1007_s12648_015_0688_6
crossref_primary_10_1364_OE_23_00A614
crossref_primary_10_1016_j_matcom_2018_09_007
crossref_primary_10_1590_s1517_707620170004_0221
crossref_primary_10_1016_j_rineng_2024_101909
crossref_primary_10_1088_1742_6596_572_1_012050
crossref_primary_10_1016_j_jallcom_2016_03_007
crossref_primary_10_1016_j_spmi_2020_106539
crossref_primary_10_1186_1556_276X_9_433
crossref_primary_10_1364_OE_22_0A1753
Cites_doi 10.1109/PVSC.2008.4922725
10.1063/1.3056628
10.1063/1.2988894
10.1557/PROC-1068-C06-02
10.1063/1.2785005
10.1016/j.spmi.2004.03.069
10.1103/PhysRevB.56.R10024
10.1063/1.116177
10.1002/pssa.200778695
10.1063/1.121581
10.1063/1.332723
10.1063/1.120191
10.1103/PhysRevB.68.235204
10.1002/pssb.200778731
10.1063/1.2378489
10.1063/1.2793180
10.1103/PhysRevLett.96.125505
10.1016/S0038-1101(02)00256-3
10.1063/1.1489481
10.1063/1.1618353
10.1016/S0921-4526(01)00417-3
10.1063/1.118419
10.1126/science.281.5379.956
10.1103/PhysRevB.75.115312
10.1002/pssc.200778719
10.1063/1.2952031
10.1063/1.3062856
10.1016/j.jpcs.2005.09.087
10.1002/pip.808
10.1063/1.3155798
10.1063/1.96266
10.1103/PhysRevB.71.161201
10.1063/1.2953089
10.1088/0268-1242/18/4/305
10.1063/1.106636
10.1143/JJAP.44.7892
10.1063/1.1787615
ContentType Journal Article
Copyright 2009 Elsevier B.V.
Copyright_xml – notice: 2009 Elsevier B.V.
DBID AAYXX
CITATION
7SP
7SU
7TB
7U5
8FD
C1K
FR3
L7M
7TG
KL.
DOI 10.1016/j.solmat.2009.11.010
DatabaseName CrossRef
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Technology Research Database

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
EndPage 483
ExternalDocumentID 10_1016_j_solmat_2009_11_010
S092702480900395X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7SU
7TB
7U5
8FD
C1K
FR3
L7M
7TG
KL.
ID FETCH-LOGICAL-c371t-c01b12c4dad00b3536f655ed6b252d83a0b4f83026383480d5b036cca26f43993
IEDL.DBID AIKHN
ISSN 0927-0248
IngestDate Sat Sep 27 19:28:17 EDT 2025
Tue Oct 07 09:37:40 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Wed Oct 01 04:47:26 EDT 2025
Fri Feb 23 02:35:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords InGaN
Device modeling
Composition grading
Heterojunction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-c01b12c4dad00b3536f655ed6b252d83a0b4f83026383480d5b036cca26f43993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1777110984
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_855713676
proquest_miscellaneous_1777110984
crossref_primary_10_1016_j_solmat_2009_11_010
crossref_citationtrail_10_1016_j_solmat_2009_11_010
elsevier_sciencedirect_doi_10_1016_j_solmat_2009_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Solar energy materials and solar cells
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Walukiewicz, Yu, Ager, Haller, Lu, Schaff (bib1) 2002; 80
Shih, Chen, Chang, Liu (bib35) 2005; 44
Jani, Ferguson, Honsberg, Kurtz (bib6) 2007; 91
Reichertz, Yu, Cui, Hawkridge, Beeman, Liliental-Weber, Ager, Walukiewicz, Schaff, Williamson, Hoffbauer (bib4) 2008; 1068
Li, Yu, Wu, Jones, Walukiewicz, Ager, Shan, Haller, Lu, Schaff (bib14) 2005; 71
Wu, Walukiewicz (bib28) 2003; 34
Green, Emery, Hishikawa, Warta (bib37) 2008; 16
Ager, Miller, Jones, Yu, Wu, Schaff, Walukiewicz (bib12) 2008; 245
Hsu, Walukiewicz (bib5) 2008; 104
Inushima, Higashiwaki, Matsui (bib25) 2003; 68
Bernardini, Fiorentini, Vanderbilt (bib34) 1997; 56
Chen, Matthews, Hao, Schaff, Eastman (bib7) 2008; 205
Schubert, Tu, Zydzik, Kopf, Benvenuti, Pinto (bib19) 1992; 60
Levinshtein, Rumyantsev, Shur (bib24) 2001
Martin, Botchkarev, Rockett, Morkoc (bib36) 1996; 68
Neufeld, Toledo, Cruz, Iza, DenBaars, Mishra (bib8) 2008; 93
O. Jani, B. Jampana, M. Mehta, H. Yu, I. Ferguson, R. Opila, C. Honsberg, Optimization of GaN window layer for InGaN solar cells using polarization effect, in: 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, USA, 2008.
Fu, Chen (bib26) 2004; 85
Anderson, Swartz, Carder, Reeves, Durbin, Chandril, Myers (bib11) 2006; 89
Wu, Walukiewicz, Yu, Shan, Ager, Haller, Lu, Schaff, Metzger, Kurtz (bib3) 2003; 94
Zheng, Horng, Wuu, Chu, Liao, Wu, Lin, Lu (bib9) 2008; 93
Nakamura (bib39) 1998; 281
Muth, Lee, Shmagin, Kolbas, Caser, Keller, Mishra, DenBaars (bib33) 1997; 71
Walukiewicz (bib13) 2001; 302
Brown, Ager, Walukiewicz, Schaff, Wu (bib15) 2008; 93
Mnatsakanov, Levinshtein, Pmortseva, Yurkov, Simin, Khan (bib29) 2003; 47
Hsu, Jones, Li, Yu, Walukiewicz (bib30) 2007; 102
King, Veal, Jefferson, McConville, Lu, Schaff (bib16) 2007; 75
Santic (bib27) 2003; 18
Jones, Yu, Li, Walukiewicz, Ager, Haller, Lu, Schaff (bib10) 2006; 96
Chen, Cartwright, Lu, Schaff (bib32) 2005; 87
Burnham, Namkoong, Look, Clafin, Doolitte (bib18) 2008; 104
Wu (bib2) 2009; 106
Virshup, Ford, Werthen (bib22) 1985; 47
Gloeckler, Sites (bib23) 2005; 66
Miller, Jones, Yu, Ager, Liliental-Weber, Haller, Walukiewicz, Williamson, Hoffbauer (bib20) 2008
Bandic, Bridger, Piquette, McGill (bib31) 1998; 72
Sassi (bib21) 1983; 54
Takamoto, Ikeda, Kurita, Ohmori (bib38) 1997; 70
Ager (10.1016/j.solmat.2009.11.010_bib12) 2008; 245
Wu (10.1016/j.solmat.2009.11.010_bib28) 2003; 34
Inushima (10.1016/j.solmat.2009.11.010_bib25) 2003; 68
Mnatsakanov (10.1016/j.solmat.2009.11.010_bib29) 2003; 47
10.1016/j.solmat.2009.11.010_bib17
Shih (10.1016/j.solmat.2009.11.010_bib35) 2005; 44
Chen (10.1016/j.solmat.2009.11.010_bib7) 2008; 205
Levinshtein (10.1016/j.solmat.2009.11.010_bib24) 2001
Nakamura (10.1016/j.solmat.2009.11.010_bib39) 1998; 281
Martin (10.1016/j.solmat.2009.11.010_bib36) 1996; 68
Brown (10.1016/j.solmat.2009.11.010_bib15) 2008; 93
King (10.1016/j.solmat.2009.11.010_bib16) 2007; 75
Green (10.1016/j.solmat.2009.11.010_bib37) 2008; 16
Reichertz (10.1016/j.solmat.2009.11.010_bib4) 2008; 1068
Hsu (10.1016/j.solmat.2009.11.010_bib5) 2008; 104
Schubert (10.1016/j.solmat.2009.11.010_bib19) 1992; 60
Sassi (10.1016/j.solmat.2009.11.010_bib21) 1983; 54
Hsu (10.1016/j.solmat.2009.11.010_bib30) 2007; 102
Miller (10.1016/j.solmat.2009.11.010_bib20) 2008
Burnham (10.1016/j.solmat.2009.11.010_bib18) 2008; 104
Bandic (10.1016/j.solmat.2009.11.010_bib31) 1998; 72
Takamoto (10.1016/j.solmat.2009.11.010_bib38) 1997; 70
Gloeckler (10.1016/j.solmat.2009.11.010_bib23) 2005; 66
Santic (10.1016/j.solmat.2009.11.010_bib27) 2003; 18
Zheng (10.1016/j.solmat.2009.11.010_bib9) 2008; 93
Muth (10.1016/j.solmat.2009.11.010_bib33) 1997; 71
Virshup (10.1016/j.solmat.2009.11.010_bib22) 1985; 47
Wu (10.1016/j.solmat.2009.11.010_bib2) 2009; 106
Walukiewicz (10.1016/j.solmat.2009.11.010_bib13) 2001; 302
Jones (10.1016/j.solmat.2009.11.010_bib10) 2006; 96
Bernardini (10.1016/j.solmat.2009.11.010_bib34) 1997; 56
Wu (10.1016/j.solmat.2009.11.010_bib1) 2002; 80
Chen (10.1016/j.solmat.2009.11.010_bib32) 2005; 87
Neufeld (10.1016/j.solmat.2009.11.010_bib8) 2008; 93
Jani (10.1016/j.solmat.2009.11.010_bib6) 2007; 91
Li (10.1016/j.solmat.2009.11.010_bib14) 2005; 71
Wu (10.1016/j.solmat.2009.11.010_bib3) 2003; 94
Anderson (10.1016/j.solmat.2009.11.010_bib11) 2006; 89
Fu (10.1016/j.solmat.2009.11.010_bib26) 2004; 85
References_xml – reference: O. Jani, B. Jampana, M. Mehta, H. Yu, I. Ferguson, R. Opila, C. Honsberg, Optimization of GaN window layer for InGaN solar cells using polarization effect, in: 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, USA, 2008.
– volume: 205
  start-page: 1103
  year: 2008
  end-page: 1105
  ident: bib7
  article-title: Growth, fabrication, and characterization of InGaN solar cells
  publication-title: phys. Stat. sol. (a)
– volume: 54
  start-page: 5421
  year: 1983
  end-page: 5427
  ident: bib21
  article-title: Theoretical analysis of solar cells based on graded band-gap structures
  publication-title: J. Appl. Phys.
– volume: 281
  start-page: 956
  year: 1998
  end-page: 961
  ident: bib39
  article-title: The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes
  publication-title: Science
– year: 2001
  ident: bib24
  publication-title: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
– volume: 302
  start-page: 123
  year: 2001
  end-page: 134
  ident: bib13
  article-title: Intrinsic limitations to the doping of wide-gap semiconductors
  publication-title: Physics B
– start-page: 1866
  year: 2008
  end-page: 1869
  ident: bib20
  article-title: Low-temperature grown compositionally graded InGaN films
  publication-title: phys. stat. sol. (c)
– volume: 34
  start-page: 63
  year: 2003
  end-page: 75
  ident: bib28
  article-title: Band gaps of InN and group III nitride alloys
  publication-title: Superlattice. Microst.
– volume: 91
  start-page: 132117-1
  year: 2007
  end-page: 3
  ident: bib6
  article-title: Design and characterization of GaN/InGaN solar cells
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 212104-1
  year: 2005
  end-page: 3
  ident: bib32
  article-title: Temperature dependence of carrier lifetimes in InN
  publication-title: Appl. Phys. Lett.
– volume: 60
  start-page: 466
  year: 1992
  end-page: 468
  ident: bib19
  article-title: Elimination of heterojunction band discontinuities by modulation doping
  publication-title: Appl. Phys. Lett.
– volume: 47
  start-page: 111
  year: 2003
  end-page: 115
  ident: bib29
  article-title: Carrier mobility model for GaN
  publication-title: Solid-State Electron.
– volume: 94
  start-page: 6477
  year: 2003
  end-page: 6482
  ident: bib3
  article-title: Superior radiation resistance of In
  publication-title: J. Appl. Phys.
– volume: 44
  start-page: 7892
  year: 2005
  end-page: 7895
  ident: bib35
  article-title: Band offsets of InN/GaN interface
  publication-title: Japan. J. Appl. Phys.
– volume: 104
  start-page: 024507-1
  year: 2008
  end-page: 7
  ident: bib5
  article-title: Modeling of InGaN/Si tandem solar cells
  publication-title: J. Appl. Phys.
– volume: 68
  start-page: 235204-1
  year: 2003
  end-page: 7
  ident: bib25
  article-title: Optical properties of Si-doped InN grown on sapphire (0001)
  publication-title: Phys. Rev. B
– volume: 1068
  start-page: C-06-02
  year: 2008
  ident: bib4
  article-title: InGaN thin films grown by ENABLE and MBE techniques on silicon substrates
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 68
  start-page: 2541
  year: 1996
  end-page: 2543
  ident: bib36
  article-title: Valence-band discontinuties of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 75
  start-page: 115312-1
  year: 2007
  end-page: 7
  ident: bib16
  publication-title: Phys. Rev. B
– volume: 104
  start-page: 024902-1
  year: 2008
  end-page: 5
  ident: bib18
  article-title: Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy
  publication-title: J. Appl. Phys.
– volume: 66
  start-page: 1891
  year: 2005
  end-page: 1894
  ident: bib23
  article-title: Band-gap grading in Cu(In,Ga)Se2 solar cells
  publication-title: J. Phys. Chem. Solids
– volume: 93
  start-page: 143502
  year: 2008
  end-page: 1–3
  ident: bib8
  article-title: High quantum efficiency InGaN/GaN solar cells with 2.95
  publication-title: Appl. Phys. Lett.
– volume: 70
  start-page: 381
  year: 1997
  end-page: 383
  ident: bib38
  article-title: Over 30% efficient InGaP/GaAs tandem solar cells
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 4741
  year: 2002
  end-page: 4743
  ident: bib1
  article-title: Small band gap bowing in In
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 219
  year: 2003
  end-page: 224
  ident: bib27
  article-title: On the hole effective mass and free holes statistics in wurtzite GaN
  publication-title: Semicond. Sci. Technol.
– volume: 93
  start-page: 262105-1
  year: 2008
  end-page: 3
  ident: bib15
  article-title: Probing and modulating surface electron accumulation in InN by the electrolyte gated Hall effect
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 261108-1
  year: 2008
  end-page: 3
  ident: bib9
  article-title: High-quality InGaN/GaN heterojunctions and their photovoltaic effects
  publication-title: Appl. Phys. Lett.
– volume: 71
  start-page: 2572
  year: 1997
  end-page: 2574
  ident: bib33
  article-title: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 184104-1
  year: 2006
  end-page: 3
  ident: bib11
  article-title: Buried p-type layers in Mg-doped InN
  publication-title: Appl. Phys. Lett.
– volume: 245
  start-page: 873
  year: 2008
  end-page: 877
  ident: bib12
  article-title: Mg-doped InN and InGaN–photoluminescence, capacitance-voltage and thermopower measurements
  publication-title: phys. stat. sol. (b)
– volume: 47
  start-page: 1319
  year: 1985
  end-page: 1321
  ident: bib22
  article-title: A 19% efficient AlGaAs solar cell with graded band gap
  publication-title: Appl. Phys. Lett.
– volume: 85
  start-page: 1523
  year: 2004
  end-page: 1525
  ident: bib26
  article-title: Effective mass of InN epilayers
  publication-title: Appl.Phys. Lett.
– volume: 71
  start-page: 161201-1
  year: 2005
  end-page: 4
  ident: bib14
  article-title: Fermi-level stabalization energy in group III nitrides
  publication-title: Phys. Rev. B
– volume: 72
  start-page: 3166
  year: 1998
  end-page: 3168
  ident: bib31
  article-title: Minority carrier diffusion length and lifetime in GaN
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: R10024
  year: 1997
  end-page: R10027
  ident: bib34
  article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 125505-1
  year: 2006
  end-page: 4
  ident: bib10
  article-title: Evidence for p-Type Doping of InN
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 073705-1
  year: 2007
  end-page: 6
  ident: bib30
  article-title: Electron mobility in InN and III-N alloys
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 61
  year: 2008
  end-page: 67
  ident: bib37
  article-title: Solar Cell Efficiency Tables (Version 32)
  publication-title: Prog. Photovolt: Res. Appl.
– volume: 106
  start-page: 011101-1
  year: 2009
  end-page: 28
  ident: bib2
  article-title: When group III-nitrides go infrared: new properties and perspectives
  publication-title: J. Appl. Phys.
– ident: 10.1016/j.solmat.2009.11.010_bib17
  doi: 10.1109/PVSC.2008.4922725
– volume: 93
  start-page: 261108-1
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib9
  article-title: High-quality InGaN/GaN heterojunctions and their photovoltaic effects
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3056628
– volume: 93
  start-page: 143502
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib8
  article-title: High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988894
– volume: 1068
  start-page: C-06-02
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib4
  article-title: InGaN thin films grown by ENABLE and MBE techniques on silicon substrates
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-1068-C06-02
– volume: 102
  start-page: 073705-1
  year: 2007
  ident: 10.1016/j.solmat.2009.11.010_bib30
  article-title: Electron mobility in InN and III-N alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2785005
– volume: 34
  start-page: 63
  year: 2003
  ident: 10.1016/j.solmat.2009.11.010_bib28
  article-title: Band gaps of InN and group III nitride alloys
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2004.03.069
– volume: 56
  start-page: R10024
  year: 1997
  ident: 10.1016/j.solmat.2009.11.010_bib34
  article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.R10024
– volume: 68
  start-page: 2541
  year: 1996
  ident: 10.1016/j.solmat.2009.11.010_bib36
  article-title: Valence-band discontinuties of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116177
– volume: 205
  start-page: 1103
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib7
  article-title: Growth, fabrication, and characterization of InGaN solar cells
  publication-title: phys. Stat. sol. (a)
  doi: 10.1002/pssa.200778695
– volume: 72
  start-page: 3166
  year: 1998
  ident: 10.1016/j.solmat.2009.11.010_bib31
  article-title: Minority carrier diffusion length and lifetime in GaN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121581
– volume: 54
  start-page: 5421
  year: 1983
  ident: 10.1016/j.solmat.2009.11.010_bib21
  article-title: Theoretical analysis of solar cells based on graded band-gap structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.332723
– volume: 71
  start-page: 2572
  year: 1997
  ident: 10.1016/j.solmat.2009.11.010_bib33
  article-title: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.120191
– volume: 68
  start-page: 235204-1
  year: 2003
  ident: 10.1016/j.solmat.2009.11.010_bib25
  article-title: Optical properties of Si-doped InN grown on sapphire (0001)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.235204
– volume: 87
  start-page: 212104-1
  year: 2005
  ident: 10.1016/j.solmat.2009.11.010_bib32
  article-title: Temperature dependence of carrier lifetimes in InN
  publication-title: Appl. Phys. Lett.
– volume: 245
  start-page: 873
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib12
  article-title: Mg-doped InN and InGaN–photoluminescence, capacitance-voltage and thermopower measurements
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200778731
– volume: 89
  start-page: 184104-1
  year: 2006
  ident: 10.1016/j.solmat.2009.11.010_bib11
  article-title: Buried p-type layers in Mg-doped InN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2378489
– volume: 91
  start-page: 132117-1
  year: 2007
  ident: 10.1016/j.solmat.2009.11.010_bib6
  article-title: Design and characterization of GaN/InGaN solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2793180
– volume: 96
  start-page: 125505-1
  year: 2006
  ident: 10.1016/j.solmat.2009.11.010_bib10
  article-title: Evidence for p-Type Doping of InN
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.125505
– volume: 47
  start-page: 111
  year: 2003
  ident: 10.1016/j.solmat.2009.11.010_bib29
  article-title: Carrier mobility model for GaN
  publication-title: Solid-State Electron.
  doi: 10.1016/S0038-1101(02)00256-3
– volume: 80
  start-page: 4741
  year: 2002
  ident: 10.1016/j.solmat.2009.11.010_bib1
  article-title: Small band gap bowing in In1−xGaxN alloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1489481
– volume: 94
  start-page: 6477
  year: 2003
  ident: 10.1016/j.solmat.2009.11.010_bib3
  article-title: Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1618353
– volume: 302
  start-page: 123
  year: 2001
  ident: 10.1016/j.solmat.2009.11.010_bib13
  article-title: Intrinsic limitations to the doping of wide-gap semiconductors
  publication-title: Physics B
  doi: 10.1016/S0921-4526(01)00417-3
– volume: 70
  start-page: 381
  year: 1997
  ident: 10.1016/j.solmat.2009.11.010_bib38
  article-title: Over 30% efficient InGaP/GaAs tandem solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118419
– volume: 281
  start-page: 956
  year: 1998
  ident: 10.1016/j.solmat.2009.11.010_bib39
  article-title: The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes
  publication-title: Science
  doi: 10.1126/science.281.5379.956
– volume: 75
  start-page: 115312-1
  year: 2007
  ident: 10.1016/j.solmat.2009.11.010_bib16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.115312
– start-page: 1866
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib20
  article-title: Low-temperature grown compositionally graded InGaN films
  publication-title: phys. stat. sol. (c)
  doi: 10.1002/pssc.200778719
– volume: 104
  start-page: 024507-1
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib5
  article-title: Modeling of InGaN/Si tandem solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2952031
– volume: 93
  start-page: 262105-1
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib15
  article-title: Probing and modulating surface electron accumulation in InN by the electrolyte gated Hall effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3062856
– volume: 66
  start-page: 1891
  year: 2005
  ident: 10.1016/j.solmat.2009.11.010_bib23
  article-title: Band-gap grading in Cu(In,Ga)Se2 solar cells
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2005.09.087
– volume: 16
  start-page: 61
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib37
  article-title: Solar Cell Efficiency Tables (Version 32)
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.808
– volume: 106
  start-page: 011101-1
  year: 2009
  ident: 10.1016/j.solmat.2009.11.010_bib2
  article-title: When group III-nitrides go infrared: new properties and perspectives
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3155798
– volume: 47
  start-page: 1319
  year: 1985
  ident: 10.1016/j.solmat.2009.11.010_bib22
  article-title: A 19% efficient AlGaAs solar cell with graded band gap
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96266
– year: 2001
  ident: 10.1016/j.solmat.2009.11.010_bib24
– volume: 71
  start-page: 161201-1
  year: 2005
  ident: 10.1016/j.solmat.2009.11.010_bib14
  article-title: Fermi-level stabalization energy in group III nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.161201
– volume: 104
  start-page: 024902-1
  year: 2008
  ident: 10.1016/j.solmat.2009.11.010_bib18
  article-title: Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2953089
– volume: 18
  start-page: 219
  year: 2003
  ident: 10.1016/j.solmat.2009.11.010_bib27
  article-title: On the hole effective mass and free holes statistics in wurtzite GaN
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/4/305
– volume: 60
  start-page: 466
  year: 1992
  ident: 10.1016/j.solmat.2009.11.010_bib19
  article-title: Elimination of heterojunction band discontinuities by modulation doping
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106636
– volume: 44
  start-page: 7892
  year: 2005
  ident: 10.1016/j.solmat.2009.11.010_bib35
  article-title: Band offsets of InN/GaN interface
  publication-title: Japan. J. Appl. Phys.
  doi: 10.1143/JJAP.44.7892
– volume: 85
  start-page: 1523
  year: 2004
  ident: 10.1016/j.solmat.2009.11.010_bib26
  article-title: Effective mass of InN epilayers
  publication-title: Appl.Phys. Lett.
  doi: 10.1063/1.1787615
SSID ssj0002634
Score 2.4205322
Snippet The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a...
The solar power conversion efficiency of compositionally graded In sub(x)Ga sub(1-x)N solar cells was simulated using a finite element approach. Incorporating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 478
SubjectTerms Composition grading
Conversion
Device modeling
Finite element method
Gallium nitrides
Heterojunction
Indium gallium nitrides
InGaN
Mathematical analysis
Photovoltaic cells
Simulation
Solar cells
Solar power generation
Title Finite element simulations of compositionally graded InGaN solar cells
URI https://dx.doi.org/10.1016/j.solmat.2009.11.010
https://www.proquest.com/docview/1777110984
https://www.proquest.com/docview/855713676
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3398
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002634
  issn: 0927-0248
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-3398
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002634
  issn: 0927-0248
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-3398
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002634
  issn: 0927-0248
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3398
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002634
  issn: 0927-0248
  databaseCode: AKRWK
  dateStart: 19920101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOL6IoLXuGmbpM1RxHVV3IsKeytJm8rK2l3sevDibzfTpqKiCF7LBMJMMo_0m28Ajq1UIsoKSY0JLOVGCmqY1FSGOQsLU4SxxnfIm6Ec3POrkRgtwFnbC4OwSu_7G59ee2v_pee12ZuNx71bprCXiicMH-OUGC3Ckos_SdKBpdPL68HwwyGHsv65jPIUF7QddDXMy1nYpYYNcSXSeWIr7c8R6puvrgNQfw1WfeZITpvNrcOCLTdg5ROf4Cb0-2NMIYltMOGkGj_56VwVmRYE4eMeo6Unk1fy8Kxzm5PL8kIPSYU1LsF3_GoL7vvnd2cD6gcl0CyKgznNWGCCMOO5zhkzkYhkIYWwuTShCPMk0szwAom-3GWLnMJyYVzgcrYLZYH1SLQNnXJa2h0gKuMxUwbrOMOF4sYZ0yqtkowVSMXchahVTpp5FnEcZjFJW7jYY9qoFAdcKldgpE6lXaAfq2YNi8Yf8nGr9_TLaUido_9j5VFrptRdFNSaLu30pUqDOI6RXjXhXSC_yCRCxDWH3e6_N7AHyw3AAGFq-9CZP7_YA5e3zM0hLJ68BYf-dL4DXmXtCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6l9NByQLSlIrzqSlxNvF4_1kcUNQ0t5AJIuVn2rrdKlW4QGw5c-O149tGXWiFxXY0la8aeh_ebbwCOgzIyzUtFvU8CFV5J6plyVPGC8dKXXDt8h7yYqem1-DKX8wGM-14YhFV2vr_16Y237r6MOm2ObhaL0SUz2EslMoaPcUbOX8BLIbnGCuzk4RfOg6vm1zJKUxTv--cakFe0b0wMW9pKJPPERtp_x6e_PHUTfibbsNXljeS03dobGITqLWz-xib4DiaTBSaQJLSIcFIvfnSzuWqyKgmCxzuEllsu78m3W1eEgpxVn92M1FjhEnzFr3fgevLpajyl3ZgEmqc6WdOcJT7huShcwZhPZapKJWUolOeSF1nqmBcl0nzFq5ZGdRXSx7AVLcdVidVI-h42qlUVdoGYXGhmPFZxXkgjfDRlMM5kOSuRiHkIaa8cm3cc4jjKYml7sNh326oUx1uaWF7YqNIh0J-rbloOjSfkda93-8dZsNHNP7HyY28mG68Jas1VYXVX20RrjeSqmRgC-Y9MJqVuGOz2nr2BD_BqenVxbs_PZl_34XULNUDA2gFsrG_vwmHMYNb-qDmhj1av7dI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+simulations+of+compositionally+graded+InGaN+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Brown%2C+G+F&rft.au=Ager%2C+J+W&rft.au=Walukiewicz%2C+W&rft.au=Wu%2C+J&rft.date=2010-03-01&rft.issn=0927-0248&rft.volume=94&rft.issue=3&rft.spage=478&rft.epage=483&rft_id=info:doi/10.1016%2Fj.solmat.2009.11.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon