Finite element simulations of compositionally graded InGaN solar cells
The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In x Ga 1− x N heterojunction removes a barrier for hole transport into GaN and incre...
Saved in:
| Published in | Solar energy materials and solar cells Vol. 94; no. 3; pp. 478 - 483 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2010
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0927-0248 1879-3398 |
| DOI | 10.1016/j.solmat.2009.11.010 |
Cover
| Abstract | The solar power conversion efficiency of compositionally graded In
x
Ga
1−
x
N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In
x
Ga
1−
x
N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In
x
Ga
1−
x
N/n-In
0.5Ga
0.5N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells. |
|---|---|
| AbstractList | The solar power conversion efficiency of compositionally graded In sub(x)Ga sub(1-x)N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In sub(x)Ga sub(1-x)N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In sub(x)Ga sub(1-x)N/n-In sub(0.5)Ga sub(0.5)N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells. The solar power conversion efficiency of compositionally graded In x Ga 1− x N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In x Ga 1− x N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In x Ga 1− x N/n-In 0.5Ga 0.5N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells. |
| Author | Brown, G.F. Wu, J. Walukiewicz, W. Ager, J.W. |
| Author_xml | – sequence: 1 givenname: G.F. surname: Brown fullname: Brown, G.F. email: gregory.f.brown@gmail.com organization: Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA – sequence: 2 givenname: J.W. surname: Ager fullname: Ager, J.W. organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA – sequence: 3 givenname: W. surname: Walukiewicz fullname: Walukiewicz, W. organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA – sequence: 4 givenname: J. surname: Wu fullname: Wu, J. organization: Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA |
| BookMark | eNqFkMFq3DAQhkVJoJukb9CDb83Fzoxly3IPgRKyyUJoL-1ZyNK4aJGtraQt5O1rZ3PKIT0NA__3z_BdsLM5zMTYZ4QKAcXNvkrBTzpXNUBfIVaA8IFtUHZ9yXkvz9gG-roroW7kR3aR0h4AasGbDdtu3ewyFeRpojkXyU1Hr7MLcyrCWJgwHUJy6669fy5-R23JFrv5QX8vlqM6Foa8T1fsfNQ-0afXecl-be9_3j2WTz8ednffnkrDO8ylARywNo3VFmDgLRejaFuyYqjb2kquYWhGydffJG8k2HYALozRtRgb3vf8kn059R5i-HOklNXk0vqBnikck5Jt2yEXnViS1-8mses6ROhls0SbU9TEkFKkUR2im3R8VghqFaz26iRYrYIVoloEL9jXN5hx-UVdjtr5_8G3J5gWW38dRZWMo9mQdZFMVja49wv-AbaBmsY |
| CitedBy_id | crossref_primary_10_1007_s00339_012_7062_8 crossref_primary_10_1007_s11082_016_0775_8 crossref_primary_10_1007_s11082_014_9968_1 crossref_primary_10_1039_C8RA03127D crossref_primary_10_1016_j_pquantelec_2014_12_001 crossref_primary_10_1007_s11664_014_3615_2 crossref_primary_10_3390_en16083483 crossref_primary_10_1109_JPHOTOV_2017_2775164 crossref_primary_10_1016_j_matlet_2013_01_011 crossref_primary_10_1007_s11082_020_02518_y crossref_primary_10_1016_j_spmi_2016_05_020 crossref_primary_10_1088_1674_1056_25_10_108801 crossref_primary_10_1007_s11082_020_02709_7 crossref_primary_10_1016_j_solener_2024_112555 crossref_primary_10_1016_j_mssp_2015_08_011 crossref_primary_10_3389_fmats_2022_1006071 crossref_primary_10_1088_0022_3727_49_48_485102 crossref_primary_10_1016_j_mtener_2020_100457 crossref_primary_10_1088_1674_4926_38_9_092001 crossref_primary_10_1364_OME_3_001777 crossref_primary_10_1149_2_009206jes crossref_primary_10_1016_j_spmi_2017_05_014 crossref_primary_10_1088_1674_1056_22_8_088401 crossref_primary_10_1016_j_jlumin_2021_118411 crossref_primary_10_1109_LED_2012_2237376 crossref_primary_10_1016_j_mseb_2024_117194 crossref_primary_10_1007_s10825_021_01695_7 crossref_primary_10_15251_JOR_2022_186_753 crossref_primary_10_1016_j_ijleo_2015_12_037 crossref_primary_10_1364_OE_28_011806 crossref_primary_10_1109_JQE_2012_2225601 crossref_primary_10_1557_s43579_021_00050_y crossref_primary_10_1109_TNANO_2020_3025481 crossref_primary_10_1186_s11671_020_03392_z crossref_primary_10_1007_s12648_016_0836_7 crossref_primary_10_1016_j_solmat_2014_07_018 crossref_primary_10_1063_1_4757990 crossref_primary_10_1007_s11664_014_3454_1 crossref_primary_10_1002_pssa_201026489 crossref_primary_10_1021_nl503616w crossref_primary_10_1051_epjpv_2018011 crossref_primary_10_1155_2015_594858 crossref_primary_10_1016_j_mseb_2012_10_033 crossref_primary_10_1016_j_physb_2021_413577 crossref_primary_10_1007_s12209_017_0058_x crossref_primary_10_1016_j_cplett_2020_137500 crossref_primary_10_1088_1674_4926_38_4_044002 crossref_primary_10_1142_S0217984924500714 crossref_primary_10_1007_s11082_013_9740_y crossref_primary_10_1016_j_ijleo_2018_02_106 crossref_primary_10_1109_JPHOT_2015_2392374 crossref_primary_10_1007_s10854_014_1709_5 crossref_primary_10_1007_s11664_020_08033_w crossref_primary_10_1007_s11082_015_0204_4 crossref_primary_10_1088_1361_6528_acf474 crossref_primary_10_1007_s11082_017_0970_2 crossref_primary_10_7498_aps_68_20191042 crossref_primary_10_1063_1_4829443 crossref_primary_10_1088_0268_1242_27_3_035019 crossref_primary_10_1088_0268_1242_28_5_055012 crossref_primary_10_1016_j_solmat_2021_111446 crossref_primary_10_1109_JPHOTOV_2012_2213073 crossref_primary_10_1007_s10825_019_01333_3 crossref_primary_10_1109_JQE_2016_2643289 crossref_primary_10_1088_0022_3727_49_29_295102 crossref_primary_10_1007_s11837_021_04716_9 crossref_primary_10_1016_j_mssp_2015_07_009 crossref_primary_10_1021_acsami_8b22569 crossref_primary_10_1016_j_spmi_2017_04_025 crossref_primary_10_1117_1_JNP_12_043505 crossref_primary_10_1038_s41560_024_01470_5 crossref_primary_10_1088_1402_4896_ada3fe crossref_primary_10_1109_TED_2022_3208081 crossref_primary_10_1016_j_spmi_2012_10_004 crossref_primary_10_1007_s11082_011_9458_7 crossref_primary_10_1002_pssa_201100154 crossref_primary_10_1007_s12633_016_9430_z crossref_primary_10_3390_photonics3010005 crossref_primary_10_1007_s11664_023_10662_w crossref_primary_10_1063_5_0076833 crossref_primary_10_1016_j_optmat_2013_03_024 crossref_primary_10_1016_j_mseb_2012_01_010 crossref_primary_10_1016_j_solener_2017_08_074 crossref_primary_10_1116_6_0001841 crossref_primary_10_1007_s11082_013_9665_5 crossref_primary_10_1016_j_mtener_2022_101229 crossref_primary_10_1007_s12596_024_02045_z crossref_primary_10_1109_JPHOTOV_2013_2292748 crossref_primary_10_3390_nano14010104 crossref_primary_10_3390_s19204386 crossref_primary_10_1007_s11082_015_0306_z crossref_primary_10_1016_j_spmi_2017_04_014 crossref_primary_10_1016_j_enconman_2016_04_059 crossref_primary_10_1016_j_spmi_2016_09_016 crossref_primary_10_1016_j_solmat_2022_111766 crossref_primary_10_1134_S1063739714080071 crossref_primary_10_1063_5_0007034 crossref_primary_10_1016_j_solener_2019_07_090 crossref_primary_10_1016_j_mee_2014_11_018 crossref_primary_10_1109_JSTQE_2010_2090342 crossref_primary_10_1021_cs501399a crossref_primary_10_1155_2014_819637 crossref_primary_10_1063_1_4745043 crossref_primary_10_1109_JPHOTOV_2013_2252953 crossref_primary_10_1063_1_4891990 crossref_primary_10_1039_D1NA00127B crossref_primary_10_1088_0256_307X_28_1_018401 crossref_primary_10_1117_1_OE_55_10_107102 crossref_primary_10_1002_ese3_436 crossref_primary_10_1186_1556_276X_9_652 crossref_primary_10_1364_OE_22_0A1334 crossref_primary_10_1155_2012_910256 crossref_primary_10_1515_ehs_2014_0012 crossref_primary_10_3390_ma6031050 crossref_primary_10_1149_2_0292001JSS crossref_primary_10_1007_s10854_019_00714_5 crossref_primary_10_1007_s12596_019_00536_y crossref_primary_10_1007_s00339_016_0146_0 crossref_primary_10_3390_en16062524 crossref_primary_10_1016_j_micrna_2023_207538 crossref_primary_10_1109_TED_2013_2285573 crossref_primary_10_1016_j_jlumin_2022_119597 crossref_primary_10_1016_j_physb_2010_10_020 crossref_primary_10_1002_pip_978 crossref_primary_10_1002_aenm_201700522 crossref_primary_10_1016_j_physb_2021_413495 crossref_primary_10_1109_JPHOTOV_2012_2193384 crossref_primary_10_1016_j_solmat_2023_112662 crossref_primary_10_1016_j_spmi_2019_05_004 crossref_primary_10_1007_s40095_017_0243_7 crossref_primary_10_1007_s12633_021_01003_9 crossref_primary_10_1016_j_solmat_2016_10_007 crossref_primary_10_7567_JJAP_54_054301 crossref_primary_10_1016_j_mssp_2015_09_001 crossref_primary_10_1016_j_rser_2017_07_022 crossref_primary_10_1142_S0217984923500409 crossref_primary_10_1002_pssa_201330030 crossref_primary_10_1016_j_mseb_2023_116740 crossref_primary_10_1109_JQE_2011_2181972 crossref_primary_10_2109_jcersj2_120_25 crossref_primary_10_1364_OL_36_003500 crossref_primary_10_1002_pip_2807 crossref_primary_10_1016_j_ijleo_2020_165403 crossref_primary_10_1016_j_cattod_2016_01_023 crossref_primary_10_1063_5_0021811 crossref_primary_10_1007_s10853_012_6321_6 crossref_primary_10_1007_s12648_015_0688_6 crossref_primary_10_1364_OE_23_00A614 crossref_primary_10_1016_j_matcom_2018_09_007 crossref_primary_10_1590_s1517_707620170004_0221 crossref_primary_10_1016_j_rineng_2024_101909 crossref_primary_10_1088_1742_6596_572_1_012050 crossref_primary_10_1016_j_jallcom_2016_03_007 crossref_primary_10_1016_j_spmi_2020_106539 crossref_primary_10_1186_1556_276X_9_433 crossref_primary_10_1364_OE_22_0A1753 |
| Cites_doi | 10.1109/PVSC.2008.4922725 10.1063/1.3056628 10.1063/1.2988894 10.1557/PROC-1068-C06-02 10.1063/1.2785005 10.1016/j.spmi.2004.03.069 10.1103/PhysRevB.56.R10024 10.1063/1.116177 10.1002/pssa.200778695 10.1063/1.121581 10.1063/1.332723 10.1063/1.120191 10.1103/PhysRevB.68.235204 10.1002/pssb.200778731 10.1063/1.2378489 10.1063/1.2793180 10.1103/PhysRevLett.96.125505 10.1016/S0038-1101(02)00256-3 10.1063/1.1489481 10.1063/1.1618353 10.1016/S0921-4526(01)00417-3 10.1063/1.118419 10.1126/science.281.5379.956 10.1103/PhysRevB.75.115312 10.1002/pssc.200778719 10.1063/1.2952031 10.1063/1.3062856 10.1016/j.jpcs.2005.09.087 10.1002/pip.808 10.1063/1.3155798 10.1063/1.96266 10.1103/PhysRevB.71.161201 10.1063/1.2953089 10.1088/0268-1242/18/4/305 10.1063/1.106636 10.1143/JJAP.44.7892 10.1063/1.1787615 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier B.V. |
| Copyright_xml | – notice: 2009 Elsevier B.V. |
| DBID | AAYXX CITATION 7SP 7SU 7TB 7U5 8FD C1K FR3 L7M 7TG KL. |
| DOI | 10.1016/j.solmat.2009.11.010 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
| DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3398 |
| EndPage | 483 |
| ExternalDocumentID | 10_1016_j_solmat_2009_11_010 S092702480900395X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7SU 7TB 7U5 8FD C1K FR3 L7M 7TG KL. |
| ID | FETCH-LOGICAL-c371t-c01b12c4dad00b3536f655ed6b252d83a0b4f83026383480d5b036cca26f43993 |
| IEDL.DBID | AIKHN |
| ISSN | 0927-0248 |
| IngestDate | Sat Sep 27 19:28:17 EDT 2025 Tue Oct 07 09:37:40 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Wed Oct 01 04:47:26 EDT 2025 Fri Feb 23 02:35:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | InGaN Device modeling Composition grading Heterojunction |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-c01b12c4dad00b3536f655ed6b252d83a0b4f83026383480d5b036cca26f43993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1777110984 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_855713676 proquest_miscellaneous_1777110984 crossref_primary_10_1016_j_solmat_2009_11_010 crossref_citationtrail_10_1016_j_solmat_2009_11_010 elsevier_sciencedirect_doi_10_1016_j_solmat_2009_11_010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-03-01 |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Solar energy materials and solar cells |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wu, Walukiewicz, Yu, Ager, Haller, Lu, Schaff (bib1) 2002; 80 Shih, Chen, Chang, Liu (bib35) 2005; 44 Jani, Ferguson, Honsberg, Kurtz (bib6) 2007; 91 Reichertz, Yu, Cui, Hawkridge, Beeman, Liliental-Weber, Ager, Walukiewicz, Schaff, Williamson, Hoffbauer (bib4) 2008; 1068 Li, Yu, Wu, Jones, Walukiewicz, Ager, Shan, Haller, Lu, Schaff (bib14) 2005; 71 Wu, Walukiewicz (bib28) 2003; 34 Green, Emery, Hishikawa, Warta (bib37) 2008; 16 Ager, Miller, Jones, Yu, Wu, Schaff, Walukiewicz (bib12) 2008; 245 Hsu, Walukiewicz (bib5) 2008; 104 Inushima, Higashiwaki, Matsui (bib25) 2003; 68 Bernardini, Fiorentini, Vanderbilt (bib34) 1997; 56 Chen, Matthews, Hao, Schaff, Eastman (bib7) 2008; 205 Schubert, Tu, Zydzik, Kopf, Benvenuti, Pinto (bib19) 1992; 60 Levinshtein, Rumyantsev, Shur (bib24) 2001 Martin, Botchkarev, Rockett, Morkoc (bib36) 1996; 68 Neufeld, Toledo, Cruz, Iza, DenBaars, Mishra (bib8) 2008; 93 O. Jani, B. Jampana, M. Mehta, H. Yu, I. Ferguson, R. Opila, C. Honsberg, Optimization of GaN window layer for InGaN solar cells using polarization effect, in: 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, USA, 2008. Fu, Chen (bib26) 2004; 85 Anderson, Swartz, Carder, Reeves, Durbin, Chandril, Myers (bib11) 2006; 89 Wu, Walukiewicz, Yu, Shan, Ager, Haller, Lu, Schaff, Metzger, Kurtz (bib3) 2003; 94 Zheng, Horng, Wuu, Chu, Liao, Wu, Lin, Lu (bib9) 2008; 93 Nakamura (bib39) 1998; 281 Muth, Lee, Shmagin, Kolbas, Caser, Keller, Mishra, DenBaars (bib33) 1997; 71 Walukiewicz (bib13) 2001; 302 Brown, Ager, Walukiewicz, Schaff, Wu (bib15) 2008; 93 Mnatsakanov, Levinshtein, Pmortseva, Yurkov, Simin, Khan (bib29) 2003; 47 Hsu, Jones, Li, Yu, Walukiewicz (bib30) 2007; 102 King, Veal, Jefferson, McConville, Lu, Schaff (bib16) 2007; 75 Santic (bib27) 2003; 18 Jones, Yu, Li, Walukiewicz, Ager, Haller, Lu, Schaff (bib10) 2006; 96 Chen, Cartwright, Lu, Schaff (bib32) 2005; 87 Burnham, Namkoong, Look, Clafin, Doolitte (bib18) 2008; 104 Wu (bib2) 2009; 106 Virshup, Ford, Werthen (bib22) 1985; 47 Gloeckler, Sites (bib23) 2005; 66 Miller, Jones, Yu, Ager, Liliental-Weber, Haller, Walukiewicz, Williamson, Hoffbauer (bib20) 2008 Bandic, Bridger, Piquette, McGill (bib31) 1998; 72 Sassi (bib21) 1983; 54 Takamoto, Ikeda, Kurita, Ohmori (bib38) 1997; 70 Ager (10.1016/j.solmat.2009.11.010_bib12) 2008; 245 Wu (10.1016/j.solmat.2009.11.010_bib28) 2003; 34 Inushima (10.1016/j.solmat.2009.11.010_bib25) 2003; 68 Mnatsakanov (10.1016/j.solmat.2009.11.010_bib29) 2003; 47 10.1016/j.solmat.2009.11.010_bib17 Shih (10.1016/j.solmat.2009.11.010_bib35) 2005; 44 Chen (10.1016/j.solmat.2009.11.010_bib7) 2008; 205 Levinshtein (10.1016/j.solmat.2009.11.010_bib24) 2001 Nakamura (10.1016/j.solmat.2009.11.010_bib39) 1998; 281 Martin (10.1016/j.solmat.2009.11.010_bib36) 1996; 68 Brown (10.1016/j.solmat.2009.11.010_bib15) 2008; 93 King (10.1016/j.solmat.2009.11.010_bib16) 2007; 75 Green (10.1016/j.solmat.2009.11.010_bib37) 2008; 16 Reichertz (10.1016/j.solmat.2009.11.010_bib4) 2008; 1068 Hsu (10.1016/j.solmat.2009.11.010_bib5) 2008; 104 Schubert (10.1016/j.solmat.2009.11.010_bib19) 1992; 60 Sassi (10.1016/j.solmat.2009.11.010_bib21) 1983; 54 Hsu (10.1016/j.solmat.2009.11.010_bib30) 2007; 102 Miller (10.1016/j.solmat.2009.11.010_bib20) 2008 Burnham (10.1016/j.solmat.2009.11.010_bib18) 2008; 104 Bandic (10.1016/j.solmat.2009.11.010_bib31) 1998; 72 Takamoto (10.1016/j.solmat.2009.11.010_bib38) 1997; 70 Gloeckler (10.1016/j.solmat.2009.11.010_bib23) 2005; 66 Santic (10.1016/j.solmat.2009.11.010_bib27) 2003; 18 Zheng (10.1016/j.solmat.2009.11.010_bib9) 2008; 93 Muth (10.1016/j.solmat.2009.11.010_bib33) 1997; 71 Virshup (10.1016/j.solmat.2009.11.010_bib22) 1985; 47 Wu (10.1016/j.solmat.2009.11.010_bib2) 2009; 106 Walukiewicz (10.1016/j.solmat.2009.11.010_bib13) 2001; 302 Jones (10.1016/j.solmat.2009.11.010_bib10) 2006; 96 Bernardini (10.1016/j.solmat.2009.11.010_bib34) 1997; 56 Wu (10.1016/j.solmat.2009.11.010_bib1) 2002; 80 Chen (10.1016/j.solmat.2009.11.010_bib32) 2005; 87 Neufeld (10.1016/j.solmat.2009.11.010_bib8) 2008; 93 Jani (10.1016/j.solmat.2009.11.010_bib6) 2007; 91 Li (10.1016/j.solmat.2009.11.010_bib14) 2005; 71 Wu (10.1016/j.solmat.2009.11.010_bib3) 2003; 94 Anderson (10.1016/j.solmat.2009.11.010_bib11) 2006; 89 Fu (10.1016/j.solmat.2009.11.010_bib26) 2004; 85 |
| References_xml | – reference: O. Jani, B. Jampana, M. Mehta, H. Yu, I. Ferguson, R. Opila, C. Honsberg, Optimization of GaN window layer for InGaN solar cells using polarization effect, in: 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, USA, 2008. – volume: 205 start-page: 1103 year: 2008 end-page: 1105 ident: bib7 article-title: Growth, fabrication, and characterization of InGaN solar cells publication-title: phys. Stat. sol. (a) – volume: 54 start-page: 5421 year: 1983 end-page: 5427 ident: bib21 article-title: Theoretical analysis of solar cells based on graded band-gap structures publication-title: J. Appl. Phys. – volume: 281 start-page: 956 year: 1998 end-page: 961 ident: bib39 article-title: The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes publication-title: Science – year: 2001 ident: bib24 publication-title: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe – volume: 302 start-page: 123 year: 2001 end-page: 134 ident: bib13 article-title: Intrinsic limitations to the doping of wide-gap semiconductors publication-title: Physics B – start-page: 1866 year: 2008 end-page: 1869 ident: bib20 article-title: Low-temperature grown compositionally graded InGaN films publication-title: phys. stat. sol. (c) – volume: 34 start-page: 63 year: 2003 end-page: 75 ident: bib28 article-title: Band gaps of InN and group III nitride alloys publication-title: Superlattice. Microst. – volume: 91 start-page: 132117-1 year: 2007 end-page: 3 ident: bib6 article-title: Design and characterization of GaN/InGaN solar cells publication-title: Appl. Phys. Lett. – volume: 87 start-page: 212104-1 year: 2005 end-page: 3 ident: bib32 article-title: Temperature dependence of carrier lifetimes in InN publication-title: Appl. Phys. Lett. – volume: 60 start-page: 466 year: 1992 end-page: 468 ident: bib19 article-title: Elimination of heterojunction band discontinuities by modulation doping publication-title: Appl. Phys. Lett. – volume: 47 start-page: 111 year: 2003 end-page: 115 ident: bib29 article-title: Carrier mobility model for GaN publication-title: Solid-State Electron. – volume: 94 start-page: 6477 year: 2003 end-page: 6482 ident: bib3 article-title: Superior radiation resistance of In publication-title: J. Appl. Phys. – volume: 44 start-page: 7892 year: 2005 end-page: 7895 ident: bib35 article-title: Band offsets of InN/GaN interface publication-title: Japan. J. Appl. Phys. – volume: 104 start-page: 024507-1 year: 2008 end-page: 7 ident: bib5 article-title: Modeling of InGaN/Si tandem solar cells publication-title: J. Appl. Phys. – volume: 68 start-page: 235204-1 year: 2003 end-page: 7 ident: bib25 article-title: Optical properties of Si-doped InN grown on sapphire (0001) publication-title: Phys. Rev. B – volume: 1068 start-page: C-06-02 year: 2008 ident: bib4 article-title: InGaN thin films grown by ENABLE and MBE techniques on silicon substrates publication-title: Mater. Res. Soc. Symp. Proc. – volume: 68 start-page: 2541 year: 1996 end-page: 2543 ident: bib36 article-title: Valence-band discontinuties of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy publication-title: Appl. Phys. Lett. – volume: 75 start-page: 115312-1 year: 2007 end-page: 7 ident: bib16 publication-title: Phys. Rev. B – volume: 104 start-page: 024902-1 year: 2008 end-page: 5 ident: bib18 article-title: Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy publication-title: J. Appl. Phys. – volume: 66 start-page: 1891 year: 2005 end-page: 1894 ident: bib23 article-title: Band-gap grading in Cu(In,Ga)Se2 solar cells publication-title: J. Phys. Chem. Solids – volume: 93 start-page: 143502 year: 2008 end-page: 1–3 ident: bib8 article-title: High quantum efficiency InGaN/GaN solar cells with 2.95 publication-title: Appl. Phys. Lett. – volume: 70 start-page: 381 year: 1997 end-page: 383 ident: bib38 article-title: Over 30% efficient InGaP/GaAs tandem solar cells publication-title: Appl. Phys. Lett. – volume: 80 start-page: 4741 year: 2002 end-page: 4743 ident: bib1 article-title: Small band gap bowing in In publication-title: Appl. Phys. Lett. – volume: 18 start-page: 219 year: 2003 end-page: 224 ident: bib27 article-title: On the hole effective mass and free holes statistics in wurtzite GaN publication-title: Semicond. Sci. Technol. – volume: 93 start-page: 262105-1 year: 2008 end-page: 3 ident: bib15 article-title: Probing and modulating surface electron accumulation in InN by the electrolyte gated Hall effect publication-title: Appl. Phys. Lett. – volume: 93 start-page: 261108-1 year: 2008 end-page: 3 ident: bib9 article-title: High-quality InGaN/GaN heterojunctions and their photovoltaic effects publication-title: Appl. Phys. Lett. – volume: 71 start-page: 2572 year: 1997 end-page: 2574 ident: bib33 article-title: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements publication-title: Appl. Phys. Lett. – volume: 89 start-page: 184104-1 year: 2006 end-page: 3 ident: bib11 article-title: Buried p-type layers in Mg-doped InN publication-title: Appl. Phys. Lett. – volume: 245 start-page: 873 year: 2008 end-page: 877 ident: bib12 article-title: Mg-doped InN and InGaN–photoluminescence, capacitance-voltage and thermopower measurements publication-title: phys. stat. sol. (b) – volume: 47 start-page: 1319 year: 1985 end-page: 1321 ident: bib22 article-title: A 19% efficient AlGaAs solar cell with graded band gap publication-title: Appl. Phys. Lett. – volume: 85 start-page: 1523 year: 2004 end-page: 1525 ident: bib26 article-title: Effective mass of InN epilayers publication-title: Appl.Phys. Lett. – volume: 71 start-page: 161201-1 year: 2005 end-page: 4 ident: bib14 article-title: Fermi-level stabalization energy in group III nitrides publication-title: Phys. Rev. B – volume: 72 start-page: 3166 year: 1998 end-page: 3168 ident: bib31 article-title: Minority carrier diffusion length and lifetime in GaN publication-title: Appl. Phys. Lett. – volume: 56 start-page: R10024 year: 1997 end-page: R10027 ident: bib34 article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides publication-title: Phys. Rev. B – volume: 96 start-page: 125505-1 year: 2006 end-page: 4 ident: bib10 article-title: Evidence for p-Type Doping of InN publication-title: Phys. Rev. Lett. – volume: 102 start-page: 073705-1 year: 2007 end-page: 6 ident: bib30 article-title: Electron mobility in InN and III-N alloys publication-title: J. Appl. Phys. – volume: 16 start-page: 61 year: 2008 end-page: 67 ident: bib37 article-title: Solar Cell Efficiency Tables (Version 32) publication-title: Prog. Photovolt: Res. Appl. – volume: 106 start-page: 011101-1 year: 2009 end-page: 28 ident: bib2 article-title: When group III-nitrides go infrared: new properties and perspectives publication-title: J. Appl. Phys. – ident: 10.1016/j.solmat.2009.11.010_bib17 doi: 10.1109/PVSC.2008.4922725 – volume: 93 start-page: 261108-1 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib9 article-title: High-quality InGaN/GaN heterojunctions and their photovoltaic effects publication-title: Appl. Phys. Lett. doi: 10.1063/1.3056628 – volume: 93 start-page: 143502 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib8 article-title: High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988894 – volume: 1068 start-page: C-06-02 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib4 article-title: InGaN thin films grown by ENABLE and MBE techniques on silicon substrates publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-1068-C06-02 – volume: 102 start-page: 073705-1 year: 2007 ident: 10.1016/j.solmat.2009.11.010_bib30 article-title: Electron mobility in InN and III-N alloys publication-title: J. Appl. Phys. doi: 10.1063/1.2785005 – volume: 34 start-page: 63 year: 2003 ident: 10.1016/j.solmat.2009.11.010_bib28 article-title: Band gaps of InN and group III nitride alloys publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2004.03.069 – volume: 56 start-page: R10024 year: 1997 ident: 10.1016/j.solmat.2009.11.010_bib34 article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.R10024 – volume: 68 start-page: 2541 year: 1996 ident: 10.1016/j.solmat.2009.11.010_bib36 article-title: Valence-band discontinuties of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.116177 – volume: 205 start-page: 1103 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib7 article-title: Growth, fabrication, and characterization of InGaN solar cells publication-title: phys. Stat. sol. (a) doi: 10.1002/pssa.200778695 – volume: 72 start-page: 3166 year: 1998 ident: 10.1016/j.solmat.2009.11.010_bib31 article-title: Minority carrier diffusion length and lifetime in GaN publication-title: Appl. Phys. Lett. doi: 10.1063/1.121581 – volume: 54 start-page: 5421 year: 1983 ident: 10.1016/j.solmat.2009.11.010_bib21 article-title: Theoretical analysis of solar cells based on graded band-gap structures publication-title: J. Appl. Phys. doi: 10.1063/1.332723 – volume: 71 start-page: 2572 year: 1997 ident: 10.1016/j.solmat.2009.11.010_bib33 article-title: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements publication-title: Appl. Phys. Lett. doi: 10.1063/1.120191 – volume: 68 start-page: 235204-1 year: 2003 ident: 10.1016/j.solmat.2009.11.010_bib25 article-title: Optical properties of Si-doped InN grown on sapphire (0001) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.235204 – volume: 87 start-page: 212104-1 year: 2005 ident: 10.1016/j.solmat.2009.11.010_bib32 article-title: Temperature dependence of carrier lifetimes in InN publication-title: Appl. Phys. Lett. – volume: 245 start-page: 873 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib12 article-title: Mg-doped InN and InGaN–photoluminescence, capacitance-voltage and thermopower measurements publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200778731 – volume: 89 start-page: 184104-1 year: 2006 ident: 10.1016/j.solmat.2009.11.010_bib11 article-title: Buried p-type layers in Mg-doped InN publication-title: Appl. Phys. Lett. doi: 10.1063/1.2378489 – volume: 91 start-page: 132117-1 year: 2007 ident: 10.1016/j.solmat.2009.11.010_bib6 article-title: Design and characterization of GaN/InGaN solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2793180 – volume: 96 start-page: 125505-1 year: 2006 ident: 10.1016/j.solmat.2009.11.010_bib10 article-title: Evidence for p-Type Doping of InN publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.125505 – volume: 47 start-page: 111 year: 2003 ident: 10.1016/j.solmat.2009.11.010_bib29 article-title: Carrier mobility model for GaN publication-title: Solid-State Electron. doi: 10.1016/S0038-1101(02)00256-3 – volume: 80 start-page: 4741 year: 2002 ident: 10.1016/j.solmat.2009.11.010_bib1 article-title: Small band gap bowing in In1−xGaxN alloys publication-title: Appl. Phys. Lett. doi: 10.1063/1.1489481 – volume: 94 start-page: 6477 year: 2003 ident: 10.1016/j.solmat.2009.11.010_bib3 article-title: Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system publication-title: J. Appl. Phys. doi: 10.1063/1.1618353 – volume: 302 start-page: 123 year: 2001 ident: 10.1016/j.solmat.2009.11.010_bib13 article-title: Intrinsic limitations to the doping of wide-gap semiconductors publication-title: Physics B doi: 10.1016/S0921-4526(01)00417-3 – volume: 70 start-page: 381 year: 1997 ident: 10.1016/j.solmat.2009.11.010_bib38 article-title: Over 30% efficient InGaP/GaAs tandem solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.118419 – volume: 281 start-page: 956 year: 1998 ident: 10.1016/j.solmat.2009.11.010_bib39 article-title: The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes publication-title: Science doi: 10.1126/science.281.5379.956 – volume: 75 start-page: 115312-1 year: 2007 ident: 10.1016/j.solmat.2009.11.010_bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.115312 – start-page: 1866 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib20 article-title: Low-temperature grown compositionally graded InGaN films publication-title: phys. stat. sol. (c) doi: 10.1002/pssc.200778719 – volume: 104 start-page: 024507-1 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib5 article-title: Modeling of InGaN/Si tandem solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.2952031 – volume: 93 start-page: 262105-1 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib15 article-title: Probing and modulating surface electron accumulation in InN by the electrolyte gated Hall effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.3062856 – volume: 66 start-page: 1891 year: 2005 ident: 10.1016/j.solmat.2009.11.010_bib23 article-title: Band-gap grading in Cu(In,Ga)Se2 solar cells publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2005.09.087 – volume: 16 start-page: 61 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib37 article-title: Solar Cell Efficiency Tables (Version 32) publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.808 – volume: 106 start-page: 011101-1 year: 2009 ident: 10.1016/j.solmat.2009.11.010_bib2 article-title: When group III-nitrides go infrared: new properties and perspectives publication-title: J. Appl. Phys. doi: 10.1063/1.3155798 – volume: 47 start-page: 1319 year: 1985 ident: 10.1016/j.solmat.2009.11.010_bib22 article-title: A 19% efficient AlGaAs solar cell with graded band gap publication-title: Appl. Phys. Lett. doi: 10.1063/1.96266 – year: 2001 ident: 10.1016/j.solmat.2009.11.010_bib24 – volume: 71 start-page: 161201-1 year: 2005 ident: 10.1016/j.solmat.2009.11.010_bib14 article-title: Fermi-level stabalization energy in group III nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.161201 – volume: 104 start-page: 024902-1 year: 2008 ident: 10.1016/j.solmat.2009.11.010_bib18 article-title: Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy publication-title: J. Appl. Phys. doi: 10.1063/1.2953089 – volume: 18 start-page: 219 year: 2003 ident: 10.1016/j.solmat.2009.11.010_bib27 article-title: On the hole effective mass and free holes statistics in wurtzite GaN publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/4/305 – volume: 60 start-page: 466 year: 1992 ident: 10.1016/j.solmat.2009.11.010_bib19 article-title: Elimination of heterojunction band discontinuities by modulation doping publication-title: Appl. Phys. Lett. doi: 10.1063/1.106636 – volume: 44 start-page: 7892 year: 2005 ident: 10.1016/j.solmat.2009.11.010_bib35 article-title: Band offsets of InN/GaN interface publication-title: Japan. J. Appl. Phys. doi: 10.1143/JJAP.44.7892 – volume: 85 start-page: 1523 year: 2004 ident: 10.1016/j.solmat.2009.11.010_bib26 article-title: Effective mass of InN epilayers publication-title: Appl.Phys. Lett. doi: 10.1063/1.1787615 |
| SSID | ssj0002634 |
| Score | 2.4205322 |
| Snippet | The solar power conversion efficiency of compositionally graded In
x
Ga
1−
x
N solar cells was simulated using a finite element approach. Incorporating a... The solar power conversion efficiency of compositionally graded In sub(x)Ga sub(1-x)N solar cells was simulated using a finite element approach. Incorporating... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 478 |
| SubjectTerms | Composition grading Conversion Device modeling Finite element method Gallium nitrides Heterojunction Indium gallium nitrides InGaN Mathematical analysis Photovoltaic cells Simulation Solar cells Solar power generation |
| Title | Finite element simulations of compositionally graded InGaN solar cells |
| URI | https://dx.doi.org/10.1016/j.solmat.2009.11.010 https://www.proquest.com/docview/1777110984 https://www.proquest.com/docview/855713676 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3398 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002634 issn: 0927-0248 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3398 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002634 issn: 0927-0248 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-3398 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002634 issn: 0927-0248 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3398 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002634 issn: 0927-0248 databaseCode: AKRWK dateStart: 19920101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOL6IoLXuGmbpM1RxHVV3IsKeytJm8rK2l3sevDibzfTpqKiCF7LBMJMMo_0m28Ajq1UIsoKSY0JLOVGCmqY1FSGOQsLU4SxxnfIm6Ec3POrkRgtwFnbC4OwSu_7G59ee2v_pee12ZuNx71bprCXiicMH-OUGC3Ckos_SdKBpdPL68HwwyGHsv65jPIUF7QddDXMy1nYpYYNcSXSeWIr7c8R6puvrgNQfw1WfeZITpvNrcOCLTdg5ROf4Cb0-2NMIYltMOGkGj_56VwVmRYE4eMeo6Unk1fy8Kxzm5PL8kIPSYU1LsF3_GoL7vvnd2cD6gcl0CyKgznNWGCCMOO5zhkzkYhkIYWwuTShCPMk0szwAom-3GWLnMJyYVzgcrYLZYH1SLQNnXJa2h0gKuMxUwbrOMOF4sYZ0yqtkowVSMXchahVTpp5FnEcZjFJW7jYY9qoFAdcKldgpE6lXaAfq2YNi8Yf8nGr9_TLaUido_9j5VFrptRdFNSaLu30pUqDOI6RXjXhXSC_yCRCxDWH3e6_N7AHyw3AAGFq-9CZP7_YA5e3zM0hLJ68BYf-dL4DXmXtCg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6l9NByQLSlIrzqSlxNvF4_1kcUNQ0t5AJIuVn2rrdKlW4QGw5c-O149tGXWiFxXY0la8aeh_ebbwCOgzIyzUtFvU8CFV5J6plyVPGC8dKXXDt8h7yYqem1-DKX8wGM-14YhFV2vr_16Y237r6MOm2ObhaL0SUz2EslMoaPcUbOX8BLIbnGCuzk4RfOg6vm1zJKUxTv--cakFe0b0wMW9pKJPPERtp_x6e_PHUTfibbsNXljeS03dobGITqLWz-xib4DiaTBSaQJLSIcFIvfnSzuWqyKgmCxzuEllsu78m3W1eEgpxVn92M1FjhEnzFr3fgevLpajyl3ZgEmqc6WdOcJT7huShcwZhPZapKJWUolOeSF1nqmBcl0nzFq5ZGdRXSx7AVLcdVidVI-h42qlUVdoGYXGhmPFZxXkgjfDRlMM5kOSuRiHkIaa8cm3cc4jjKYml7sNh326oUx1uaWF7YqNIh0J-rbloOjSfkda93-8dZsNHNP7HyY28mG68Jas1VYXVX20RrjeSqmRgC-Y9MJqVuGOz2nr2BD_BqenVxbs_PZl_34XULNUDA2gFsrG_vwmHMYNb-qDmhj1av7dI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+simulations+of+compositionally+graded+InGaN+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Brown%2C+G+F&rft.au=Ager%2C+J+W&rft.au=Walukiewicz%2C+W&rft.au=Wu%2C+J&rft.date=2010-03-01&rft.issn=0927-0248&rft.volume=94&rft.issue=3&rft.spage=478&rft.epage=483&rft_id=info:doi/10.1016%2Fj.solmat.2009.11.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |