Evaluation and Projection of Near-Surface Wind Speed over China Based on CMIP6 Models

The characteristics of near-surface wind speed (NWS) are important to the study of dust storms, evapotranspiration, heavy rainfall, air pollution, and wind energy development. This study evaluated the performance of 30 models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) through compa...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 12; no. 8; p. 1062
Main Authors Deng, Hao, Hua, Wei, Fan, Guangzhou
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text
ISSN2073-4433
2073-4433
DOI10.3390/atmos12081062

Cover

More Information
Summary:The characteristics of near-surface wind speed (NWS) are important to the study of dust storms, evapotranspiration, heavy rainfall, air pollution, and wind energy development. This study evaluated the performance of 30 models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) through comparison with observational NWS data acquired in China during a historical period (1975–2014), and projected future changes in NWS under three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) based on an optimal multi-model ensemble. Results showed that most models reproduced the spatial pattern of NWS for all seasons and the annual mean, although the models generally overestimated NWS magnitude. All models tended to underestimate the trends of decline of NWS for all seasons and the annual mean. On the basis of a comprehensive ranking index, the KIOST-ESM, CNRM-ESM2-1, HadGEM3-GC31-LL, CMCC-CM2-SR5, and KACE-1-0-G models were ranked as the five best-performing models. In the projections of future change, nationally averaged NWS for all months was weaker than in the historical period, and the trends decreased markedly under all the different scenarios except the winter time series under SSP2-4.5. Additionally, the projected NWS over most regions of China weakened in both the early period (2021–2060) and the later period (2061–2100).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12081062