Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction
Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in re...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 6; pp. 6268 - 6279 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 1558-0016 |
| DOI | 10.1109/TITS.2023.3251022 |
Cover
| Summary: | Estimating traffic flow states at unmeasured urban locations provides a cost-efficient solution for many ITS applications. In this work, a geostatistical framework, kriging is extended in such a way that it can both estimate and predict traffic volume and speed at various unobserved locations, in real-time. In the paper, different distance metrics for kriging are evaluated. Then, a new, data-driven one is formulated, capturing the similarity of measurement sites. Then, with multidimensional scaling the distances are transformed into a hyperspace, where the kriging algorithm can be used. As a next step, temporal dependency is injected into the estimator via extending the hyperspace with an extra dimension, enabling for short horizon traffic flow prediction. Additionally, a temporal correction is proposed to compensate for minor changes in traffic flow patterns. Numerical results suggest that the spatio-temporal prediction can make more accurate predictions compared to other distance metric-based kriging algorithms. Additionally, compared to deep learning, the results are on par while the algorithm is more resilient against traffic pattern changes. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1524-9050 1558-0016 1558-0016 |
| DOI: | 10.1109/TITS.2023.3251022 |