DIMENSION OF POLAR SETS FOR BROWNIAN SHEET
Let W={W(t);t ∈ R^N+} be the d-dlmensional N-parameter Brownian Sheet. Sufficient conditions for a compact set F 包含于 R^d \ {0} to be a polar set for W are proved. It is also proved that if 2N ≤ d, then for any compact set E 包含于 R^N>, inf(dimF : F ∈ B(R^d), P{W(E) ∩ F ≠ Φ }> 0} = d - 2DimE, and...
Saved in:
Published in | Acta mathematica scientia Vol. 23; no. 4; pp. 549 - 560 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2003
Department of Applied Mathematics, Xidian University, Xi'an, 710071, China Department of Mathematics, Yangtze University, Jingzhou, 434104, China%Department of Applied Mathematics, Xidian University, Xi'an, 710071, China |
Subjects | |
Online Access | Get full text |
ISSN | 0252-9602 1572-9087 |
DOI | 10.1016/S0252-9602(17)30499-X |
Cover
Summary: | Let W={W(t);t ∈ R^N+} be the d-dlmensional N-parameter Brownian Sheet. Sufficient conditions for a compact set F 包含于 R^d \ {0} to be a polar set for W are proved. It is also proved that if 2N ≤ d, then for any compact set E 包含于 R^N>, inf(dimF : F ∈ B(R^d), P{W(E) ∩ F ≠ Φ }> 0} = d - 2DimE, and if 2N > d, then for any compact set F 包含于 R^d\{0}, inf{dimE : E ∈ B(R^N>),p{W(E) ∩ F ≠Φ} > 0}= d/2 - DimF\2, where B(R^d) and B(R^N>) denote the Borel σ-algebra in R^d and R^N> respectively, and dim and Dim are Hausdorff dimension and Packing dimension respectively. |
---|---|
Bibliography: | O211.6 42-1227/O |
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(17)30499-X |