Predictive pre-cooling of thermo-active building systems with low-lift chillers
This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictiv...
Saved in:
Published in | HVAC&R research Vol. 18; no. 5; pp. 858 - 873 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Atlanta
Taylor & Francis Group
01.10.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1078-9669 2374-4731 1938-5587 2374-474X |
DOI | 10.1080/10789669.2012.643752 |
Cover
Abstract | This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. |
---|---|
AbstractList | This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. [PUBLICATION ABSTRACT] This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. [PUBLICATIONABSTRACT] |
Author | Gayeski, N. T. Armstrong, P. R. Norford, L. K. |
Author_xml | – sequence: 1 givenname: N. T. surname: Gayeski fullname: Gayeski, N. T. organization: KGS Buildings, LLC – sequence: 2 givenname: P. R. surname: Armstrong fullname: Armstrong, P. R. organization: Mechanical Engineering Program , the Masdar Institute of Science and Technology – sequence: 3 givenname: L. K. surname: Norford fullname: Norford, L. K. organization: Department of Architecture , Massachusetts Institute of Technology |
BookMark | eNqFkEtPwzAQhC1UJNrCP-AQiQuXFD8Sx-GCUMVLqlQOcI4cd01dOXGxHar-exKFEwe47K4034xWM0OT1rWA0CXBC4IFviG4ECXn5YJiQhc8Y0VOT9CUlEykeS6KSX_3SDowZ2gWwg5jzFnJpmj96mFjVDRfkOw9pMo5a9qPxOkkbsE3LpWjWHfGbgYlHEOEJiQHE7eJdYfUGh0TtTXWgg_n6FRLG-DiZ8_R--PD2_I5Xa2fXpb3q1QxLmJa1pJuJGguKXCti4wL0CIvNOgM84JxomtZc1WWDDSmkgPFNYECclECJjWbo-sxd-_dZwchVo0JCqyVLbguVIQwnlMuOO3Rq1_oznW-7b-r-vYI4RTjgcpGSnkXggdd7b1ppD_20MANY2y5GlquxpZ72-0vmzJRRuPa6KWx_5nvRrNptfONPDhvN1WUR-u89rJVJlTsz4Rv2k6X-w |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2014_10_054 crossref_primary_10_1016_j_rineng_2024_102544 crossref_primary_10_1080_19401493_2019_1688393 crossref_primary_10_1016_j_buildenv_2021_107952 crossref_primary_10_1016_j_apenergy_2014_03_087 crossref_primary_10_1016_j_applthermaleng_2016_06_017 crossref_primary_10_1016_j_solener_2014_11_024 crossref_primary_10_1016_j_apenergy_2015_01_084 crossref_primary_10_1016_j_solener_2018_06_038 crossref_primary_10_1109_JPROC_2016_2520758 crossref_primary_10_3390_en16052417 crossref_primary_10_1016_j_rser_2015_12_040 crossref_primary_10_1016_j_apenergy_2019_03_209 crossref_primary_10_1016_j_apenergy_2022_119104 crossref_primary_10_3390_en16041922 crossref_primary_10_1016_j_apenergy_2020_116131 crossref_primary_10_3390_en14020271 crossref_primary_10_1109_ACCESS_2020_3039408 crossref_primary_10_3390_buildings12101671 crossref_primary_10_1080_10789669_2013_801303 crossref_primary_10_1016_j_arcontrol_2020_09_001 crossref_primary_10_1016_j_enbuild_2022_111921 crossref_primary_10_1016_j_enbuild_2019_01_028 crossref_primary_10_1016_j_enbuild_2021_111708 crossref_primary_10_1080_23744731_2016_1197718 crossref_primary_10_1016_j_apenergy_2024_123581 crossref_primary_10_1016_j_enbuild_2014_09_039 crossref_primary_10_1016_j_buildenv_2017_10_022 crossref_primary_10_1016_j_enbuild_2025_115387 crossref_primary_10_1063_1_5053110 crossref_primary_10_1115_1_4050874 crossref_primary_10_1109_TSG_2019_2945278 crossref_primary_10_3390_en16031381 |
Cites_doi | 10.1115/1.4001466 10.1016/j.enbuild.2006.09.009 10.1016/0378-7788(95)00917-M 10.1080/10789669.1997.10391376 10.1137/S1052623497331373 10.1080/10789669.1996.10391333 10.1080/10789669.2009.10390842 10.1016/j.ijthermalsci.2003.06.001 10.1137/S1052623493250780 10.2172/923234 10.1002/er.4440150909 10.1016/j.apenergy.2009.01.008 10.1115/1.2888056 10.1080/10789669.2002.10391290 10.1137/S1052623496300507 10.2172/976986 10.1137/S1052623400378742 10.1016/j.enbuild.2006.06.006 10.1016/S0378-7788(98)00081-4 10.1080/10789669.2009.10390843 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor & Francis Ltd. 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor & Francis Ltd. 2012 |
DBID | AAYXX CITATION U9A 7TB 8FD FR3 KR7 |
DOI | 10.1080/10789669.2012.643752 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Career and Technical Education (Alumni Edition) Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Career and Technical Education (Alumni Edition) Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1938-5587 2374-474X |
EndPage | 873 |
ExternalDocumentID | 2774166391 10_1080_10789669_2012_643752 643752 |
GroupedDBID | .7F .QJ 0BK 0R~ 29I 3FF 4.4 5GY 8R4 8R5 AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB AEISY AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW B0M BENPR BLEHA CCCUG CE4 DGEBU DKSSO EAP EBS EJD EMK EPL ESX E~A E~B GEVLZ GUQSH H13 HCIFZ HF~ HZ~ H~P I-F IPNFZ IRD ITF ITG ITH J.P KYCEM M2O M4Z NA5 NX~ O9- P2P RIG RNANH RNS ROSJB RTWRZ RWL RZS S-T SNACF TAE TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TUS UT5 UU3 ZGOLN ~8M ~S~ 07I 6TJ 7RQ 88I 8FE 8FG 8G5 AAGDL AAYXX ABUWG ACTTO ADUMR ADXEU AEHZU AEZBV AFBWG AFION AFRVT AGBKS AGVKY AGWUF AGYFW AI. AIYEW AKHJE AKMBP ALRRR ALXIB BGSSV BPHCQ BWMZZ C0- CITATION CYRSC DAOYK DEXXA DWQXO FETWF GNUQQ IFELN L6V M2P NUSFT OPCYK Q2X S0X TAJZE UB6 VH1 U9A 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c368t-9ba2daef6a2e6ff7468ef857fef4067361fbab6c993ef02a6e20b1e7e589e01b3 |
ISSN | 1078-9669 2374-4731 |
IngestDate | Fri Sep 05 11:46:15 EDT 2025 Wed Aug 13 04:44:24 EDT 2025 Wed Oct 01 05:03:52 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Wed Dec 25 09:04:19 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-9ba2daef6a2e6ff7468ef857fef4067361fbab6c993ef02a6e20b1e7e589e01b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1081162002 |
PQPubID | 32491 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1081162002 proquest_miscellaneous_1136526862 crossref_primary_10_1080_10789669_2012_643752 informaworld_taylorfrancis_310_1080_10789669_2012_643752 crossref_citationtrail_10_1080_10789669_2012_643752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Atlanta |
PublicationPlace_xml | – name: Atlanta |
PublicationTitle | HVAC&R research |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | Adlam T. (e_1_3_2_2_1) 1948 e_1_3_2_28_1 Mumma S. (e_1_3_2_41_1) 2001; 107 Eto J. H. (e_1_3_2_17_1) 1984 Olesen B. W. (e_1_3_2_43_1) 2002; 108 e_1_3_2_22_1 e_1_3_2_24_1 Armstrong P. R. (e_1_3_2_5_1) 2006; 112 Brunello P. (e_1_3_2_14_1) 2003; 2003 Meierhans R. A. (e_1_3_2_40_1) 1996; 102 Henze G. (e_1_3_2_25_1) 2010; 132 Krarti M. (e_1_3_2_34_1) 1999; 105 Braun J. E. (e_1_3_2_13_1) 2006; 112 e_1_3_2_18_1 e_1_3_2_7_1 Henze G. (e_1_3_2_26_1) 1999; 105 e_1_3_2_31_1 Roth K. (e_1_3_2_45_1) 2009 Brandemuehl M. J. (e_1_3_2_9_1) 1990; 96 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_37_1 e_1_3_2_3_1 Conniff J. P. (e_1_3_2_15_1) 1991; 97 Braun J. E. (e_1_3_2_10_1) 1990; 96 Snyder M. E. (e_1_3_2_47_1) 1990 Stephenson D. G. (e_1_3_2_48_1) 1967; 73 e_1_3_2_50_1 e_1_3_2_27_1 e_1_3_2_29_1 Güntensperger W. (e_1_3_2_20_1) 2005 e_1_3_2_42_1 Gayeski N. (e_1_3_2_19_1) 2010; 117 e_1_3_2_21_1 e_1_3_2_44_1 Stephenson D. G. (e_1_3_2_49_1) 1971; 77 e_1_3_2_46_1 Henze G. (e_1_3_2_23_1) 2008; 114 Doebbler I. M. (e_1_3_2_16_1) 2010; 52 Armstrong P. R. (e_1_3_2_6_1) 2006; 112 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_30_1 e_1_3_2_32_1 MathWorks (e_1_3_2_39_1) 2010 e_1_3_2_4_1 e_1_3_2_36_1 e_1_3_2_51_1 Braun J. E. (e_1_3_2_11_1) 2007; 113 |
References_xml | – volume: 132 start-page: 021009. year: 2010 ident: e_1_3_2_25_1 article-title: Advances in near-optimal control of passive building thermal storage publication-title: Journal of Solar Energy Engineering doi: 10.1115/1.4001466 – ident: e_1_3_2_35_1 doi: 10.1016/j.enbuild.2006.09.009 – volume: 73 start-page: 508 issue: 1 year: 1967 ident: e_1_3_2_48_1 article-title: Cooling load calculations by thermal response factor method publication-title: ASHRAE Transactions – ident: e_1_3_2_31_1 doi: 10.1016/0378-7788(95)00917-M – volume: 2003 start-page: 637 year: 2003 ident: e_1_3_2_14_1 article-title: Applications of heating and cooling thermal slabs for different buildings and climates publication-title: ASHRAE Transactions Symposia – volume: 105 issue: 2 year: 1999 ident: e_1_3_2_34_1 article-title: Planning horizon for a predictive optimal controller for thermal energy storage systems publication-title: ASHRAE Transactions – ident: e_1_3_2_22_1 doi: 10.1080/10789669.1997.10391376 – volume: 77 start-page: 117 issue: 2 year: 1971 ident: e_1_3_2_49_1 article-title: Calculation of heat conduction transfer functions for multi-layer slabs publication-title: ASHRAE Transactions – ident: e_1_3_2_52_1 – year: 1990 ident: e_1_3_2_47_1 article-title: Cooling cost minimization using building mass for thermal storage publication-title: ASHRAE Transactions Research – ident: e_1_3_2_37_1 doi: 10.1137/S1052623497331373 – volume: 112 issue: 1 year: 2006 ident: e_1_3_2_5_1 article-title: Control with building mass—Part I: Thermal response model publication-title: ASHRAE Transactions – ident: e_1_3_2_30_1 doi: 10.1080/10789669.1996.10391333 – ident: e_1_3_2_18_1 – volume: 96 start-page: 876 issue: 2 year: 1990 ident: e_1_3_2_10_1 article-title: Reducing energy costs and peak electrical demand through optimal control of building thermal storage publication-title: ASHRAE Transactions – ident: e_1_3_2_4_1 doi: 10.1080/10789669.2009.10390842 – ident: e_1_3_2_24_1 doi: 10.1016/j.ijthermalsci.2003.06.001 – volume: 112 issue: 1 year: 2006 ident: e_1_3_2_6_1 article-title: Control with building mass—Part II: Simulation publication-title: ASHRAE Transactions – ident: e_1_3_2_50_1 doi: 10.1137/S1052623493250780 – ident: e_1_3_2_28_1 doi: 10.2172/923234 – volume: 108 start-page: 698 issue: 2 year: 2002 ident: e_1_3_2_43_1 article-title: Control of slab heating and cooling systems studied by dynamic computer simulations publication-title: ASHRAE Transactions – volume-title: Radiant Heating year: 1948 ident: e_1_3_2_2_1 – ident: e_1_3_2_42_1 – year: 2009 ident: e_1_3_2_45_1 article-title: Using off-peak precooling publication-title: ASHRAE Journal – ident: e_1_3_2_44_1 doi: 10.1002/er.4440150909 – volume: 114 start-page: 75 issue: 2 year: 2008 ident: e_1_3_2_23_1 article-title: Optimization of building thermal mass control in the presence of energy and demand charges publication-title: ASHRAE Transactions – volume: 102 start-page: 693 issue: 1 year: 1996 ident: e_1_3_2_40_1 article-title: Room air-conditioning by means of overnight cooling of the concrete ceiling publication-title: ASHRAE Transactions – volume-title: 8th REHVA World Congress for Building Technologies(CLIMA 2005), Lausanne, Switzerland, October 10–12 year: 2005 ident: e_1_3_2_20_1 – volume: 96 start-page: 871 issue: 2 year: 1990 ident: e_1_3_2_9_1 article-title: Modeling and testing the interaction of conditioned air with building thermal mass publication-title: ASHRAE Transactions – volume: 97 start-page: 704 issue: 1 year: 1991 ident: e_1_3_2_15_1 article-title: Strategies for reducing peak air-conditioning loads by using heat storage in the building structure publication-title: ASHRAE Transactions – volume: 113 start-page: 343 issue: 2 year: 2007 ident: e_1_3_2_11_1 article-title: Impact of Control on Operating Costs for Cool Storage Systems with Dynamic Electric Rates publication-title: ASHRAE Transactions – ident: e_1_3_2_21_1 doi: 10.1016/j.apenergy.2009.01.008 – ident: e_1_3_2_32_1 – ident: e_1_3_2_38_1 doi: 10.1115/1.2888056 – volume-title: Matlab Global Optimization Toolbox 3: User's Guide year: 2010 ident: e_1_3_2_39_1 – ident: e_1_3_2_12_1 doi: 10.1080/10789669.2002.10391290 – ident: e_1_3_2_36_1 doi: 10.1137/S1052623496300507 – volume: 112 start-page: 547 issue: 1 year: 2006 ident: e_1_3_2_13_1 article-title: Assessment of demand limiting using building thermal mass in small commercial buildings publication-title: ASHRAE Transactions – ident: e_1_3_2_46_1 – ident: e_1_3_2_29_1 doi: 10.2172/976986 – volume-title: Annual Symposium on Improving Building Energy Efficiency, College Station, TX, August 14–15 year: 1984 ident: e_1_3_2_17_1 – ident: e_1_3_2_51_1 – ident: e_1_3_2_8_1 doi: 10.1137/S1052623400378742 – ident: e_1_3_2_27_1 doi: 10.1016/j.enbuild.2006.06.006 – volume: 52 start-page: 28 issue: 12 year: 2010 ident: e_1_3_2_16_1 article-title: Radiant slab cooling for retail publication-title: ASHRAE Journal – volume: 117 start-page: ML-11-023 issue: 2 year: 2010 ident: e_1_3_2_19_1 article-title: Empirical modeling of a rolling-piston compressor heat pump for predictive control in low-lift cooling publication-title: ASHRAE Transactions – volume: 107 start-page: 1 issue: 1 year: 2001 ident: e_1_3_2_41_1 article-title: Achieving dry outside air in an energy-efficient manner publication-title: ASHRAE Transactions – ident: e_1_3_2_33_1 doi: 10.1016/S0378-7788(98)00081-4 – ident: e_1_3_2_7_1 – ident: e_1_3_2_3_1 doi: 10.1080/10789669.2009.10390843 – volume: 105 start-page: 553 issue: 1 year: 1999 ident: e_1_3_2_26_1 article-title: The impact of forecasting uncertainty on performance of a predictive optimal controller for thermal energy storage systems publication-title: ASHRAE Transactions |
SSID | ssj0006393 |
Score | 1.7592546 |
Snippet | This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 858 |
SubjectTerms | Algorithms Chilled water systems Chillers Compressors Cooling systems Energy conservation Energy consumption Load Mathematical models Optimization Predictive control Temperature |
Title | Predictive pre-cooling of thermo-active building systems with low-lift chillers |
URI | https://www.tandfonline.com/doi/abs/10.1080/10789669.2012.643752 https://www.proquest.com/docview/1081162002 https://www.proquest.com/docview/1136526862 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1938-5587 dateEnd: 20141130 omitProxy: true ssIdentifier: ssj0006393 issn: 1078-9669 databaseCode: ABDBF dateStart: 20040101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1938-5587 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006393 issn: 1078-9669 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPiE9RGChI7AllNE7jOG9U20qFSjehFipeItuxJaTQjC0Tgl_PvbGdtFoFg5coH46r-h7bJ_a59xLyimWiSBiAl8q4gA-UDLqUEglgORsqxQXNFPo7f5iz6XL0fpWser23m94ltTxUv3b6lfyPVeEe2BW9ZP_Bsm2lcAPOwb5wBAvD8UY2PrvAbZZG_INqDlVVpRMxI637VoXCPpQu97WL2-w82srqR1h-NXXj0F06JbwnqtNP4yNAxcfXLhpQu2r8TvzULtf1vFNYA14ucVG9GTjOOhXivGrV8zO3ouqWGCLaitX8qAg8AsN4ZruHzW5j2k6gNha7n07t1bWR2kobsWasGDV29BA3EW082-3A2PPTfLKczfLFyWpxEE_Ov4eYNQx31w_iY2vWW2SPpozRPtkbT4-_fG5nY2Bg1snC_QXvPsmHb3b9-BY92Qpee22ybhjI4h656z4dgrHFwX3S0-sH5M5GQMmH5LRDRLCBiKAywRYiAo-IwCEiQEQEHhGBR8QjspycLI6moUuZEaqY8TrMpKCF0IYJqpkx6YhxbXiSGm1GmJKIRUYKyRSwUm2GVDBNhzLSqU54poeRjB-T_rpa6yck4BkvFFU0Bk48ooUUomAZ10Dw0gI4ux6Q2LdUrlw8eUxrUuaRCzvr2zfH9s1t-w5I2L51buOp_KU83zRCXjfrWMYmncnjP7-67w2Wu057iaWjiKEyaUBeto9hSMV9MrHW1RWUQeknRdeppzco84zc7vrMPunXF1f6ORDVWr5wWPwN6_uPQg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+pre-cooling+of+thermo-active+building+systems+with+low-lift+chillers&rft.jtitle=HVAC%26R+research&rft.au=Gayeski%2C+N+T&rft.au=Armstrong%2C+P+R&rft.au=Norford%2C+L+K&rft.date=2012-10-01&rft.issn=1078-9669&rft.volume=18&rft.issue=5&rft.spage=858&rft.epage=858&rft_id=info:doi/10.1080%2F10789669.2012.643752&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-9669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-9669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-9669&client=summon |