Predictive pre-cooling of thermo-active building systems with low-lift chillers

This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictiv...

Full description

Saved in:
Bibliographic Details
Published inHVAC&R research Vol. 18; no. 5; pp. 858 - 873
Main Authors Gayeski, N. T., Armstrong, P. R., Norford, L. K.
Format Journal Article
LanguageEnglish
Published Atlanta Taylor & Francis Group 01.10.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1078-9669
2374-4731
1938-5587
2374-474X
DOI10.1080/10789669.2012.643752

Cover

Abstract This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner.
AbstractList This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. [PUBLICATION ABSTRACT]
This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner.
This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at low pressure ratios, serving a single zone with a thermo-active building system. The predictive control algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods, including a model of temperature and load-dependent chiller performance extending to low-pressure and part-load ratios and a data-driven zone temperature response model that accounts for the transient thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of zone and concrete-core thermal response are identified from monitored zone temperature and thermal load data and combined with an empirical model of a low-lift chiller to implement model predictive control. The energy consumption of the cooling system, including the chiller compressor, condenser fan, and chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active building system for thermal storage and radiant distribution. A generalized pattern-search optimization over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing the system's sensible cooling efficiency in an experimental test chamber subject to the typical summer week of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%, respectively, relative to a high efficiency, variable-speed split-system air conditioner. [PUBLICATIONABSTRACT]
Author Gayeski, N. T.
Armstrong, P. R.
Norford, L. K.
Author_xml – sequence: 1
  givenname: N. T.
  surname: Gayeski
  fullname: Gayeski, N. T.
  organization: KGS Buildings, LLC
– sequence: 2
  givenname: P. R.
  surname: Armstrong
  fullname: Armstrong, P. R.
  organization: Mechanical Engineering Program , the Masdar Institute of Science and Technology
– sequence: 3
  givenname: L. K.
  surname: Norford
  fullname: Norford, L. K.
  organization: Department of Architecture , Massachusetts Institute of Technology
BookMark eNqFkEtPwzAQhC1UJNrCP-AQiQuXFD8Sx-GCUMVLqlQOcI4cd01dOXGxHar-exKFEwe47K4034xWM0OT1rWA0CXBC4IFviG4ECXn5YJiQhc8Y0VOT9CUlEykeS6KSX_3SDowZ2gWwg5jzFnJpmj96mFjVDRfkOw9pMo5a9qPxOkkbsE3LpWjWHfGbgYlHEOEJiQHE7eJdYfUGh0TtTXWgg_n6FRLG-DiZ8_R--PD2_I5Xa2fXpb3q1QxLmJa1pJuJGguKXCti4wL0CIvNOgM84JxomtZc1WWDDSmkgPFNYECclECJjWbo-sxd-_dZwchVo0JCqyVLbguVIQwnlMuOO3Rq1_oznW-7b-r-vYI4RTjgcpGSnkXggdd7b1ppD_20MANY2y5GlquxpZ72-0vmzJRRuPa6KWx_5nvRrNptfONPDhvN1WUR-u89rJVJlTsz4Rv2k6X-w
CitedBy_id crossref_primary_10_1016_j_enbuild_2014_10_054
crossref_primary_10_1016_j_rineng_2024_102544
crossref_primary_10_1080_19401493_2019_1688393
crossref_primary_10_1016_j_buildenv_2021_107952
crossref_primary_10_1016_j_apenergy_2014_03_087
crossref_primary_10_1016_j_applthermaleng_2016_06_017
crossref_primary_10_1016_j_solener_2014_11_024
crossref_primary_10_1016_j_apenergy_2015_01_084
crossref_primary_10_1016_j_solener_2018_06_038
crossref_primary_10_1109_JPROC_2016_2520758
crossref_primary_10_3390_en16052417
crossref_primary_10_1016_j_rser_2015_12_040
crossref_primary_10_1016_j_apenergy_2019_03_209
crossref_primary_10_1016_j_apenergy_2022_119104
crossref_primary_10_3390_en16041922
crossref_primary_10_1016_j_apenergy_2020_116131
crossref_primary_10_3390_en14020271
crossref_primary_10_1109_ACCESS_2020_3039408
crossref_primary_10_3390_buildings12101671
crossref_primary_10_1080_10789669_2013_801303
crossref_primary_10_1016_j_arcontrol_2020_09_001
crossref_primary_10_1016_j_enbuild_2022_111921
crossref_primary_10_1016_j_enbuild_2019_01_028
crossref_primary_10_1016_j_enbuild_2021_111708
crossref_primary_10_1080_23744731_2016_1197718
crossref_primary_10_1016_j_apenergy_2024_123581
crossref_primary_10_1016_j_enbuild_2014_09_039
crossref_primary_10_1016_j_buildenv_2017_10_022
crossref_primary_10_1016_j_enbuild_2025_115387
crossref_primary_10_1063_1_5053110
crossref_primary_10_1115_1_4050874
crossref_primary_10_1109_TSG_2019_2945278
crossref_primary_10_3390_en16031381
Cites_doi 10.1115/1.4001466
10.1016/j.enbuild.2006.09.009
10.1016/0378-7788(95)00917-M
10.1080/10789669.1997.10391376
10.1137/S1052623497331373
10.1080/10789669.1996.10391333
10.1080/10789669.2009.10390842
10.1016/j.ijthermalsci.2003.06.001
10.1137/S1052623493250780
10.2172/923234
10.1002/er.4440150909
10.1016/j.apenergy.2009.01.008
10.1115/1.2888056
10.1080/10789669.2002.10391290
10.1137/S1052623496300507
10.2172/976986
10.1137/S1052623400378742
10.1016/j.enbuild.2006.06.006
10.1016/S0378-7788(98)00081-4
10.1080/10789669.2009.10390843
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
DBID AAYXX
CITATION
U9A
7TB
8FD
FR3
KR7
DOI 10.1080/10789669.2012.643752
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Career and Technical Education (Alumni Edition)
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Career and Technical Education (Alumni Edition)

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1938-5587
2374-474X
EndPage 873
ExternalDocumentID 2774166391
10_1080_10789669_2012_643752
643752
GroupedDBID .7F
.QJ
0BK
0R~
29I
3FF
4.4
5GY
8R4
8R5
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
AEISY
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
B0M
BENPR
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EAP
EBS
EJD
EMK
EPL
ESX
E~A
E~B
GEVLZ
GUQSH
H13
HCIFZ
HF~
HZ~
H~P
I-F
IPNFZ
IRD
ITF
ITG
ITH
J.P
KYCEM
M2O
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RZS
S-T
SNACF
TAE
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
UU3
ZGOLN
~8M
~S~
07I
6TJ
7RQ
88I
8FE
8FG
8G5
AAGDL
AAYXX
ABUWG
ACTTO
ADUMR
ADXEU
AEHZU
AEZBV
AFBWG
AFION
AFRVT
AGBKS
AGVKY
AGWUF
AGYFW
AI.
AIYEW
AKHJE
AKMBP
ALRRR
ALXIB
BGSSV
BPHCQ
BWMZZ
C0-
CITATION
CYRSC
DAOYK
DEXXA
DWQXO
FETWF
GNUQQ
IFELN
L6V
M2P
NUSFT
OPCYK
Q2X
S0X
TAJZE
UB6
VH1
U9A
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c368t-9ba2daef6a2e6ff7468ef857fef4067361fbab6c993ef02a6e20b1e7e589e01b3
ISSN 1078-9669
2374-4731
IngestDate Fri Sep 05 11:46:15 EDT 2025
Wed Aug 13 04:44:24 EDT 2025
Wed Oct 01 05:03:52 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Wed Dec 25 09:04:19 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-9ba2daef6a2e6ff7468ef857fef4067361fbab6c993ef02a6e20b1e7e589e01b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1081162002
PQPubID 32491
PageCount 16
ParticipantIDs proquest_journals_1081162002
proquest_miscellaneous_1136526862
crossref_primary_10_1080_10789669_2012_643752
informaworld_taylorfrancis_310_1080_10789669_2012_643752
crossref_citationtrail_10_1080_10789669_2012_643752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Atlanta
PublicationPlace_xml – name: Atlanta
PublicationTitle HVAC&R research
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References Adlam T. (e_1_3_2_2_1) 1948
e_1_3_2_28_1
Mumma S. (e_1_3_2_41_1) 2001; 107
Eto J. H. (e_1_3_2_17_1) 1984
Olesen B. W. (e_1_3_2_43_1) 2002; 108
e_1_3_2_22_1
e_1_3_2_24_1
Armstrong P. R. (e_1_3_2_5_1) 2006; 112
Brunello P. (e_1_3_2_14_1) 2003; 2003
Meierhans R. A. (e_1_3_2_40_1) 1996; 102
Henze G. (e_1_3_2_25_1) 2010; 132
Krarti M. (e_1_3_2_34_1) 1999; 105
Braun J. E. (e_1_3_2_13_1) 2006; 112
e_1_3_2_18_1
e_1_3_2_7_1
Henze G. (e_1_3_2_26_1) 1999; 105
e_1_3_2_31_1
Roth K. (e_1_3_2_45_1) 2009
Brandemuehl M. J. (e_1_3_2_9_1) 1990; 96
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_37_1
e_1_3_2_3_1
Conniff J. P. (e_1_3_2_15_1) 1991; 97
Braun J. E. (e_1_3_2_10_1) 1990; 96
Snyder M. E. (e_1_3_2_47_1) 1990
Stephenson D. G. (e_1_3_2_48_1) 1967; 73
e_1_3_2_50_1
e_1_3_2_27_1
e_1_3_2_29_1
Güntensperger W. (e_1_3_2_20_1) 2005
e_1_3_2_42_1
Gayeski N. (e_1_3_2_19_1) 2010; 117
e_1_3_2_21_1
e_1_3_2_44_1
Stephenson D. G. (e_1_3_2_49_1) 1971; 77
e_1_3_2_46_1
Henze G. (e_1_3_2_23_1) 2008; 114
Doebbler I. M. (e_1_3_2_16_1) 2010; 52
Armstrong P. R. (e_1_3_2_6_1) 2006; 112
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_30_1
e_1_3_2_32_1
MathWorks (e_1_3_2_39_1) 2010
e_1_3_2_4_1
e_1_3_2_36_1
e_1_3_2_51_1
Braun J. E. (e_1_3_2_11_1) 2007; 113
References_xml – volume: 132
  start-page: 021009.
  year: 2010
  ident: e_1_3_2_25_1
  article-title: Advances in near-optimal control of passive building thermal storage
  publication-title: Journal of Solar Energy Engineering
  doi: 10.1115/1.4001466
– ident: e_1_3_2_35_1
  doi: 10.1016/j.enbuild.2006.09.009
– volume: 73
  start-page: 508
  issue: 1
  year: 1967
  ident: e_1_3_2_48_1
  article-title: Cooling load calculations by thermal response factor method
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_31_1
  doi: 10.1016/0378-7788(95)00917-M
– volume: 2003
  start-page: 637
  year: 2003
  ident: e_1_3_2_14_1
  article-title: Applications of heating and cooling thermal slabs for different buildings and climates
  publication-title: ASHRAE Transactions Symposia
– volume: 105
  issue: 2
  year: 1999
  ident: e_1_3_2_34_1
  article-title: Planning horizon for a predictive optimal controller for thermal energy storage systems
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_22_1
  doi: 10.1080/10789669.1997.10391376
– volume: 77
  start-page: 117
  issue: 2
  year: 1971
  ident: e_1_3_2_49_1
  article-title: Calculation of heat conduction transfer functions for multi-layer slabs
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_52_1
– year: 1990
  ident: e_1_3_2_47_1
  article-title: Cooling cost minimization using building mass for thermal storage
  publication-title: ASHRAE Transactions Research
– ident: e_1_3_2_37_1
  doi: 10.1137/S1052623497331373
– volume: 112
  issue: 1
  year: 2006
  ident: e_1_3_2_5_1
  article-title: Control with building mass—Part I: Thermal response model
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_30_1
  doi: 10.1080/10789669.1996.10391333
– ident: e_1_3_2_18_1
– volume: 96
  start-page: 876
  issue: 2
  year: 1990
  ident: e_1_3_2_10_1
  article-title: Reducing energy costs and peak electrical demand through optimal control of building thermal storage
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_4_1
  doi: 10.1080/10789669.2009.10390842
– ident: e_1_3_2_24_1
  doi: 10.1016/j.ijthermalsci.2003.06.001
– volume: 112
  issue: 1
  year: 2006
  ident: e_1_3_2_6_1
  article-title: Control with building mass—Part II: Simulation
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_50_1
  doi: 10.1137/S1052623493250780
– ident: e_1_3_2_28_1
  doi: 10.2172/923234
– volume: 108
  start-page: 698
  issue: 2
  year: 2002
  ident: e_1_3_2_43_1
  article-title: Control of slab heating and cooling systems studied by dynamic computer simulations
  publication-title: ASHRAE Transactions
– volume-title: Radiant Heating
  year: 1948
  ident: e_1_3_2_2_1
– ident: e_1_3_2_42_1
– year: 2009
  ident: e_1_3_2_45_1
  article-title: Using off-peak precooling
  publication-title: ASHRAE Journal
– ident: e_1_3_2_44_1
  doi: 10.1002/er.4440150909
– volume: 114
  start-page: 75
  issue: 2
  year: 2008
  ident: e_1_3_2_23_1
  article-title: Optimization of building thermal mass control in the presence of energy and demand charges
  publication-title: ASHRAE Transactions
– volume: 102
  start-page: 693
  issue: 1
  year: 1996
  ident: e_1_3_2_40_1
  article-title: Room air-conditioning by means of overnight cooling of the concrete ceiling
  publication-title: ASHRAE Transactions
– volume-title: 8th REHVA World Congress for Building Technologies(CLIMA 2005), Lausanne, Switzerland, October 10–12
  year: 2005
  ident: e_1_3_2_20_1
– volume: 96
  start-page: 871
  issue: 2
  year: 1990
  ident: e_1_3_2_9_1
  article-title: Modeling and testing the interaction of conditioned air with building thermal mass
  publication-title: ASHRAE Transactions
– volume: 97
  start-page: 704
  issue: 1
  year: 1991
  ident: e_1_3_2_15_1
  article-title: Strategies for reducing peak air-conditioning loads by using heat storage in the building structure
  publication-title: ASHRAE Transactions
– volume: 113
  start-page: 343
  issue: 2
  year: 2007
  ident: e_1_3_2_11_1
  article-title: Impact of Control on Operating Costs for Cool Storage Systems with Dynamic Electric Rates
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_21_1
  doi: 10.1016/j.apenergy.2009.01.008
– ident: e_1_3_2_32_1
– ident: e_1_3_2_38_1
  doi: 10.1115/1.2888056
– volume-title: Matlab Global Optimization Toolbox 3: User's Guide
  year: 2010
  ident: e_1_3_2_39_1
– ident: e_1_3_2_12_1
  doi: 10.1080/10789669.2002.10391290
– ident: e_1_3_2_36_1
  doi: 10.1137/S1052623496300507
– volume: 112
  start-page: 547
  issue: 1
  year: 2006
  ident: e_1_3_2_13_1
  article-title: Assessment of demand limiting using building thermal mass in small commercial buildings
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_46_1
– ident: e_1_3_2_29_1
  doi: 10.2172/976986
– volume-title: Annual Symposium on Improving Building Energy Efficiency, College Station, TX, August 14–15
  year: 1984
  ident: e_1_3_2_17_1
– ident: e_1_3_2_51_1
– ident: e_1_3_2_8_1
  doi: 10.1137/S1052623400378742
– ident: e_1_3_2_27_1
  doi: 10.1016/j.enbuild.2006.06.006
– volume: 52
  start-page: 28
  issue: 12
  year: 2010
  ident: e_1_3_2_16_1
  article-title: Radiant slab cooling for retail
  publication-title: ASHRAE Journal
– volume: 117
  start-page: ML-11-023
  issue: 2
  year: 2010
  ident: e_1_3_2_19_1
  article-title: Empirical modeling of a rolling-piston compressor heat pump for predictive control in low-lift cooling
  publication-title: ASHRAE Transactions
– volume: 107
  start-page: 1
  issue: 1
  year: 2001
  ident: e_1_3_2_41_1
  article-title: Achieving dry outside air in an energy-efficient manner
  publication-title: ASHRAE Transactions
– ident: e_1_3_2_33_1
  doi: 10.1016/S0378-7788(98)00081-4
– ident: e_1_3_2_7_1
– ident: e_1_3_2_3_1
  doi: 10.1080/10789669.2009.10390843
– volume: 105
  start-page: 553
  issue: 1
  year: 1999
  ident: e_1_3_2_26_1
  article-title: The impact of forecasting uncertainty on performance of a predictive optimal controller for thermal energy storage systems
  publication-title: ASHRAE Transactions
SSID ssj0006393
Score 1.7592546
Snippet This article describes the development and experimental validation of a data-driven model predictive control algorithm that optimizes the operation of a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 858
SubjectTerms Algorithms
Chilled water systems
Chillers
Compressors
Cooling systems
Energy conservation
Energy consumption
Load
Mathematical models
Optimization
Predictive control
Temperature
Title Predictive pre-cooling of thermo-active building systems with low-lift chillers
URI https://www.tandfonline.com/doi/abs/10.1080/10789669.2012.643752
https://www.proquest.com/docview/1081162002
https://www.proquest.com/docview/1136526862
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1938-5587
  dateEnd: 20141130
  omitProxy: true
  ssIdentifier: ssj0006393
  issn: 1078-9669
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1938-5587
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006393
  issn: 1078-9669
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPiE9RGChI7AllNE7jOG9U20qFSjehFipeItuxJaTQjC0Tgl_PvbGdtFoFg5coH46r-h7bJ_a59xLyimWiSBiAl8q4gA-UDLqUEglgORsqxQXNFPo7f5iz6XL0fpWser23m94ltTxUv3b6lfyPVeEe2BW9ZP_Bsm2lcAPOwb5wBAvD8UY2PrvAbZZG_INqDlVVpRMxI637VoXCPpQu97WL2-w82srqR1h-NXXj0F06JbwnqtNP4yNAxcfXLhpQu2r8TvzULtf1vFNYA14ucVG9GTjOOhXivGrV8zO3ouqWGCLaitX8qAg8AsN4ZruHzW5j2k6gNha7n07t1bWR2kobsWasGDV29BA3EW082-3A2PPTfLKczfLFyWpxEE_Ov4eYNQx31w_iY2vWW2SPpozRPtkbT4-_fG5nY2Bg1snC_QXvPsmHb3b9-BY92Qpee22ybhjI4h656z4dgrHFwX3S0-sH5M5GQMmH5LRDRLCBiKAywRYiAo-IwCEiQEQEHhGBR8QjspycLI6moUuZEaqY8TrMpKCF0IYJqpkx6YhxbXiSGm1GmJKIRUYKyRSwUm2GVDBNhzLSqU54poeRjB-T_rpa6yck4BkvFFU0Bk48ooUUomAZ10Dw0gI4ux6Q2LdUrlw8eUxrUuaRCzvr2zfH9s1t-w5I2L51buOp_KU83zRCXjfrWMYmncnjP7-67w2Wu057iaWjiKEyaUBeto9hSMV9MrHW1RWUQeknRdeppzco84zc7vrMPunXF1f6ORDVWr5wWPwN6_uPQg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+pre-cooling+of+thermo-active+building+systems+with+low-lift+chillers&rft.jtitle=HVAC%26R+research&rft.au=Gayeski%2C+N+T&rft.au=Armstrong%2C+P+R&rft.au=Norford%2C+L+K&rft.date=2012-10-01&rft.issn=1078-9669&rft.volume=18&rft.issue=5&rft.spage=858&rft.epage=858&rft_id=info:doi/10.1080%2F10789669.2012.643752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-9669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-9669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-9669&client=summon