Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation

La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption),...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 31; no. 2; pp. 119 - 123
Main Author 沈美庆 赵真 陈家浩 苏玉更 王军 王欣全
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2013
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/S1002-0721(12)60244-0

Cover

More Information
Summary:La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption), activated oxygen evaluation and H2 -TPR (temperature-programmed reduction) technologies. The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution, especially for lower temperature activity. The La0.9 Ca0.1 MnO 3 sample showed the maximum conversion of 82% at 300 oC. The monodentate nitrates played a crucial role for the formation of NO2 . The reducibility of Mn 4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.
Bibliography:La 1–x Ca x MnO 3 perovskites NO oxidation monodentate nitrates Mn 4+ ions activated oxygen
11-2788/TF
La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption), activated oxygen evaluation and H2 -TPR (temperature-programmed reduction) technologies. The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution, especially for lower temperature activity. The La0.9 Ca0.1 MnO 3 sample showed the maximum conversion of 82% at 300 oC. The monodentate nitrates played a crucial role for the formation of NO2 . The reducibility of Mn 4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(12)60244-0